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Abstract

For almost two decades, the poor performance observed with
the so-called Director task has been interpreted as evidence of
limited use of Theory of Mind in communication. Here we
propose a probabilistic model of common ground in referential
communication that derives three inferences from an utterance:
what the speaker is talking about in a visual context, what she
knows about the context, and what referential expressions she
prefers. We tested our model by comparing its inferences with
those made by human participants and found that it closely
mirrors their judgments, whereas an alternative model
compromising the hearer’s expectations of cooperativeness
and efficiency reveals a worse fit to the human data. Rather
than assuming that common ground is fixed in a given
exchange and may or may not constrain reference resolution,
we show how common ground can be inferred as part of the
process of reference assignment.

Keywords: common ground; computational modeling;

reference resolution; Theory of Mind

Introduction

Imagine you are on a plane and the passenger next to you is
reading the news and comments: ‘Trump has done it again’.
You would probably interpret ‘Trump’ to mean Donald
Trump, but what if your best friend in college also went by
the name “Trump’: would you even consider that your fellow
passenger could be talking about your friend?

An old debate in theoretical and experimental pragmatics
addressed precisely this question: whether names (or definite
descriptions, more generally) are interpreted relative to the
interlocutors’ mutually shared knowledge, or common
ground. Clark and Marshall (1981) argued that indeed,
considerations of common ground should constrain
demonstrative reference. However, Keysar (1997) responded
that a real test of this view should separate the speaker’s and
listener’s perspectives (as in the example above), otherwise
the listener may simply rely on their own private knowledge
and assume common ground with the speaker.

Keysar and colleagues designed the so-called ‘Director
task’ to test whether listeners use common ground to
constraint reference interpretation. In this task, a participant
follows the instructions of a confederate to move around
various objects in a vertical grid of squares. The confederate
sits on the other side of the grid and cannot see all of the
objects, because some of the cells are occluded on her side.
Crucially, the confederate is supposed to be ignorant of the
contents of those cells, and when she asks the participant to
‘move the small candle,” for example, the smallest of three
candles is visible only to the participant. Over a long series
of studies, participants have shown a tendency to consider,

and sometimes even reach for, the smallest candle in their
privileged view before picking up the medium-sized candle
in open view (e.g., Keysar et al., 2003; Lin et al., 2010).

Keysar et al. interpreted this pattern of results as evidence
of an ‘egocentric bias’ in communication, according to which
listeners initially comprehend language egocentrically and
only use common ground as a correction mechanism. This
view renewed the old debate on reference and common
ground when other studies using the Director task showed
that listeners can use common ground information from the
earliest stages of interpretation (e.g., Nadig & Sedivy, 2002;
Hanna & Tanenhaus, 2004). However, the negative results
observed with the Director task have also been interpreted in
social cognition research as evidence that we make limited
use of Theory of Mind in communication (e.g., Apperly &
Butterfill, 2009; Apperly et al., 2010).

We have recently argued that the Director task is not a
reliable test of Theory of Mind use in communication since
optimal performance in the task (according to the usual
metrics of interference) is possible by using a selective-
attention strategy, without necessarily deriving any epistemic
inferences about the speaker (Rubio-Fernandez, 2017).

Inferring common ground

While allowing to separate the speaker’s and hearer’s
perspectives, the Director task makes some unnatural
assumptions that rarely apply in everyday communication.
The first is that participants must assume that the confederate
only knows about the objects that she can see in the grid and
will not refer to any other object. In reality, however,
speakers often refer to entities outside their visual field.
Given the high selective attention demands of this paradigm,
participants’ fixations on the hidden objects in the grid need
not be a form of egocentric behavior.

A second unnatural assumption in the Director task is how
common ground is fixed at the start of the game, rather than
being inferred during the exchange. A more reliable test of
Theory of Mind use in communication would be to see
whether participants are able to infer common ground given
the Director’s instructions. For example, if the confederate
asked the participant for ‘the blue cup’ and there was a red
cup in an occluded cell, would participants infer that the
confederate knows about the red cup and used color
contrastively? The results of Rubio-Fernandez (2017) show
precisely this, suggesting that when participants keep track of
the contents of the occluded cells in the grid, they may still
be making sophisticated epistemic inferences, rather than
failing to use their Theory of Mind.



Heller et al. (2016) have recently proposed a probabilistic
model of reference resolution based on the results of the
Director task. Rather than assuming that participants interpret
the instructions either from their own egocentric perspective,
or according to their common ground with the Director, this
model integrates both perspectives by giving each a
probabilistic weight. Heller et al.’s model accounts for some
discrepancies in the results of previous studies but assumes
that common ground is determined by shared visual context,
and does not allow for the possibility that (1) the speaker may
be aware of objects that she cannot currently see, or (2) that
the listener can infer and reconsider what the speaker knows.

In this study we present and test a probabilistic model of
referential communication that assigns reference to an
expression in a given visual context by jointly deriving
epistemic inferences based on the speaker’s choice of
referential expression and adjusting their expectations about
the speaker’s linguistic preferences. For example, if a rational
and cooperative speaker produced an under-specific
description (e.g., ‘the cup’ when there are two cups from the
listener’s perspective), the listener would assume that the
speaker only knows about one of the objects. Likewise, if the
same speaker produced a modified description (e.g., ‘the blue
cup’), the listener could assume that the speaker was either
preempting an ambiguity (between the two cups) or using the
adjective redundantly (rather than contrastively). Our model
therefore tries to account for three pragmatic phenomena
given a referential expression: what the speaker is talking
about in the visual context (referent), what she knows about
the context (beliefs) and how she talks (efficiency).

Computational framework

Our model (http:/github.com/julianje/CommonGround)
consists of two components: a generative model of how
speakers choose their utterances given a target referent, and a
Bayesian model of how listeners infer speakers’ referents and
beliefs given their utterances. Our framework builds upon the
strengths of reference resolution models in language (Frank
& Goodman, 2012; Franke & Degen, 2013; Kehller & Rohde,
2013; Shafto, Goodman, & Griffiths, 2014; Stevens, 2017)
and mental-state inference models (Baker, Jara-Ettinger,
Saxe, & Tenenbaum, 2017; Jara-Ettinger, Schulz, &
Tenenbaum, under review). We begin by describing the
generative model of a speaker, and we then explain how our
model of a listener uses this speaker model to infer the
speaker’s beliefs and referents given their utterances.

Speaker model

In our generative model, the speaker has a set of beliefs
(which, in our task, corresponds to what the speaker can see)
and a goal (which, in our task, is to communicate a referent)
that together determine the speaker’s utterance. To generate
the utterance, the speaker has an intuitive model of a simple

' Naturally, speakers can be under-informative for many reasons,
including distraction, accidents, and maliciousness. Here, we call the under-
specification parameter the ‘Uncooperativeness parameter’ for simplicity,

listener, which she uses to reason which potential utterances
are sufficiently informative.

The simple listener model takes a set of beliefs and an
utterance and returns a uniform probability distribution over
all potential referents that match the utterance. For instance,
the utterance ‘the triangle’, combined with a belief that there
is only one triangle among all the objects, returns a
probability of 1 for the triangle and a probability of O for all
other potential referents in the space of beliefs. Through this
model, the speaker would determine that the utterance ‘the
triangle’ is sufficiently informative. By contrast, if the simple
listener’s beliefs contained two triangles, then it would return
a probability of 1/2 for each of these triangles, and a
probability of 0 for all other potential referents. The speaker
would therefore conclude that the utterance is not sufficiently
informative. Using this model of a simple listener, the
generative model of a speaker finds an utterance which is
sufficiently informative to identify the intended referent (i.e.
where the referent has a probability of 1 based on the simple
listener model).

Intuitively, speakers can accidentally be under- or over-
specific. Thus, we include a small probability that the speaker
will produce an utterance that is insufficiently informative
(the Uncooperativeness parameter'), and a small probability
that the speaker will produce redundant modifiers (the
Redundancy parameter). We estimate both parameters
through participant judgments (see Parameter estimation
study). Formally, the Uncooperativeness parameter is the
probability that the speaker will believe that a proposed
utterance is sufficiently informative, independently of the
output from the simple listener model. Similarly, the
Redundancy parameter is the probability that the speaker will
consider using a modified expression without evaluating if a
simpler one would have been sufficiently informative.

Listener model

Our model of participants as listeners consists of a Bayesian
inference mechanism for inferring a speaker’s beliefs and
intended referent through the generative model of the
speaker.

We treat the probability of under-specification (the
Uncooperativeness parameter) as observable and constant
across all speakers. That is, we assume that listeners do not
question that speakers are generally cooperative, but they
nonetheless understand that they can accidentally fail to
specify the referent.

By contrast, we treat the probability of over-specification
(the Redundancy parameter) as unobservable and variable
across speakers. That is, we assume that listeners believe that
different speakers may be more or less likely to use adjectives
redundantly and that each speaker’s individual tendency to
use redundant adjectives must be inferred. Nonetheless, we
assume that participants have prior beliefs about how often
people speak redundantly.

but it is intended to capture the general expectation that speakers may be
under-informative, regardless of the underlying reason.



Given an utterance, our listener model performs a joint
inference over the speaker’s beliefs, intended referents and
degree of redundancy using Bayes’ rule:

p(b,t,rlu) < p(ulb,t,r)p(b,t,7) (1)

where b is the speaker’s belief, ¢ is the target (i.e. the
speaker’s intended referent), » is the speaker’s level of
redundancy, and u is the utterance the speaker produced. The
prior distribution, p(b, t,r), is given by

p(b,t,r) =p(tIb)p(b)p(r) @)

where the prior beliefs about the speaker’s level of
redundancy (p(r)) and the speaker’s beliefs (p(b)) are
independent, and the probability of a target referent depends
on the speaker’s beliefs (p(t|b)), such that only objects that
the speaker knows about have positive probability of being
the target. In our task (see Experiment), we use a prior
distribution over beliefs, a beta distribution (fit to
participants’ priors in the Parameter estimation task) over
redundancy, and a uniform distribution over the referents,
conditioned on the speaker being aware of these potential
referents. Finally, the likelihood function, p(ul|b,t,r), is
computed through the generative model described above.

Parameter estimation study

Methods

Participants 50 participants from the US (as determined by
their IP addresses) were recruited using Amazon’s
Mechanical Turk Framework.

Stimuli 24 displays of shapes of different colors were
generated. 20 of these displays consisted of a single shape
(circle, rectangle, square, star and triangle) in 4 colors (blue,
green, red and yellow) surrounded by a black border. The
remaining 4 displays consisted of two shapes of the same type
in different colors with one of these shapes (the target)
surrounded by a black border (target side counterbalanced).
The single shapes were used to measure over-specification
(and estimate expectations about redundancy) and the double
shapes to measure under-specification (and estimate
expectations about cooperativeness).

Procedure Participants were told they would see a set of
images with a target surrounded by a black border and that
their task would be to select which of two utterances an
average speaker would use to refer to it given the visual
display. The two utterances were always an unmodified
description of the target (e.g., “The triangle’) and a modified
description of the target (e.g. ‘The blue triangle’). Thus,
selecting the modified description in the single-shape trials
(e.g., preferring “The blue triangle’ when there is only one
triangle) reveals expectations about over-specification, while
selecting the unmodified description in the dual-shape trials
(e.g., preferring ‘The triangle’ when there are two triangles)
reveals expectations about under-specification.

Results

Our model’s Uncooperativeness  parameter  (see
Computational Framework) was set to the proportion of times
that participants chose an under-specific description in the
dual-shape trials: 5.5% of trials. By contrast, because our
model infers each speaker’s degree of redundancy, we used
participants’ choices in the single-shape trials to build a prior
distribution (see prior over Redundancy parameter in
Computational Framework). To do so, we fit a beta
distribution to participants’ choices using maximal
likelihood. The resulting prior distribution was a Beta
distribution with parameters a=0.39 and 3=0.32.

Experiment

Methods

Participants 60 participants (mean age (SD) = 35.22 years
(10.66 years), range = 18-73 years) from the US (as
determined by their IP address) were recruited using
Amazon’s Mechanical Turk Framework.

Stimuli

Each trial included two displays of 4 geometrical shapes
(circles, squares, stars and triangles) in 4 different colors
(blue, green, red and yellow), each with a referential
expression for the target (see Figure 1 for examples). The
description of the target appeared above each display, and
could be either modified (e.g., ‘The blue triangle’) or
unmodified (e.g., ‘The triangle’). The combination of shapes
and instructions yielded four conditions for each individual
display: Unique (single shape/ no color adjective),
Contrastive (two shapes/ color adjective), Redundant (single
shape/ color adjective), Ambiguous (two shapes/ no color
adjective). The possible overlap between the positions of the
target and the contrast shape (when present) in the two
displays yielded six types of position overlap: No Overlap,
Target-Target, Contrast-Contrast, Target-Contrast, Double-
Same (2 Targets and 2 Contrasts), Double-Crossed (2 Target-
Contrast). A total of 28 combinations were included in 2 lists
of 14 trials with a balanced number of condition
combinations. We only excluded 3 combinations because one
did not allow any common ground inference (Ambiguous-
Ambiguous/No Overlap) or rendered two impossible
combinations where the target or the contrast in one display
would correspond with the blind spot in the other
(Ambiguous-Contrastive/Contrast-Contrast and Ambiguous-
Contrastive/Double-Crossed).

Procedure

Participants played a coordination game with a virtual
speaker and followed her instructions to select a shape in a
display. The virtual speaker giving the instructions could
only see 3 shapes in each display, whereas participants could
see 4. The virtual speaker did not know that she had a blind
spot, but always tried to be helpful. Each trial contained two
displays and the speaker’s blind spot was the same quadrant
in both displays, although it varied across trials. The
speaker’s choice of referential expression to single out the
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Figure 1. Six trials from the Experiment along with model predictions. Each trial consisted of two displays of four shapes and an instruction for each
display. Using separate 2-dimensional trackpads, participants had to infer (1) which cell the speaker was referring to on the left-hand side display, (2) which
cell the speaker was referring to on the right-hand side display, and (3) which cell was the speaker’s blind spot in both displays. In each panel, the region
of the right shows average participant judgments on the overlaid trackpads, along with model predictions. Speaker judgments are shown in red and model
predictions are shown in blue. Each relation from a model prediction to a participant judgment is connected by a black line. L refers to the inferred referent
on the left-hand side display, R refers to the inferred referent on the right-hand side display, and B refers to the inferred blind spot.

target was written above each display. See Figure 1 for
examples. The pairs of displays were randomly ordered and
rotated in each trial.

Participants had to answer three questions in each trial:
which shape the virtual speaker was referring to in each
display and which quadrant was the blind spot in both
displays. Participants used three separate 2-dimensional
trackpads shown on the screen to enter their responses while
indicating their certainty (i.e. the closer they moved the
button towards a corner, the greater their certainty that that
was the referent or the blind spot; see Figure 1). Participants
were given two examples of how to use the 2D trackpads and
two examples of complete trials to show them how to reason
about the blind spot by considering both displays.

Results
Participant judgments on the trackpad were interpreted as
marginal probabilities that the referents or blind spots were
on the left or right side (x value) and on the top or bottom (y
value). Model predictions were transformed to points in the
2D trackpad. The top row of Figure 2 shows our model
predictions (x-axis) plotted against average participant
judgments (y-axis). Our model showed a correlation of 0.95
for belief inferences (95% CI: 0.92-0.97) and a correlation of
0.99 (95% CI: 0.989-0.997) for referent inferences.

Figure 1 shows the six trials and the corresponding graphs
showing participant inferred referents in red (L for the
referent in the left-hand side display and R for the referent in

the right-hand side display) and inferred blind spot (B) along
with model predictions in blue (connected by a black line).

Figure 1a (Unique-Contrastive) shows how our model and
participants infer common ground based on the inferred
referents. The target in the display on the left overlaps with
the contrast shape in the display on the right, making the
probability that the blind spot is in each of the two top cells
1/2. Figure 1b (Contrastive-Contrastive) shows how
contrastive adjectives affect our model and participant
inferences. Again, the speaker in Figure 1b refers to each of
the two bottom cells, but because the two contrast shapes are
in the top left cell, participants beliefs about the blind spot
shift towards the top right cell.

Figure 1c¢ (Unique-Contrastive) shows how our model and
participants infer common ground using contrast. The two
instructions unambiguously identify targets in opposite
quadrants, but people and our model infer that the contrast
shape in the right display is also in common ground. Figure
1d (Ambiguous-Contrastive) shows how our model and
participants can combine under-specification with contrast to
jointly infer common ground and resolve referential
ambiguity. The left display suggests that the speaker is either
referring to the bottom left cell or to the top right cell, and
that she can only see one of them. Although the right display
makes no direct reference to either of these cells, the contrast
shape suggests that the speaker can see the bottom left cell.
Having inferred common ground, participants and our model
infer that the speaker was referring to the bottom left cell in



the left display and that she cannot see the top right cell. Note
that our model does not show full confidence in this joint
inference (because it is also possible that the speaker was
uncooperative) and neither do participants.

Figure le (Redundant-Contrastive) shows the effects of
redundancy in our model predictions. Here, because the
speaker is redundant in the left display, speakers and our
model do not treat the contrast on the right display as
informative when inferring common ground. Finally, Figure
If (Unique-Contrastive) shows how our model and
participants inferences are sensitive to the possibility that the
speaker is being uncooperative. The speaker unambiguously
refers to the triangle in the left display, revealing that she can
see the bottom left cell. The speaker then ambiguously refers
to either of the two triangles on the right display. Under
perfect rationality, the speaker must be referring to the
bottom left cell in both displays and her blind spot would be
the right top cell. However, our model’s confidence about the
inferred referent decreases in the right display because of the
speaker’s possible uncooperativeness, accurately predicting
this fine-grained difference in participant judgments.

Referent inferences

Belief inferences

Participant judgments
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Figure 2. Model predictions against participant judgments. The top row
shows our model and the bottom row shows the model after specification
lesion (where the model no longer draws any inferences through the
presence or absence of modification). Each point corresponds to a
participant judgment. Blue lines show best linear fit.
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Model lesion predictions

Having found that our model predicted participant judgments
with high quantitative accuracy, we next evaluated the role of
under-specification (Uncooperativeness parameter) and over-
specification (Redundancy parameter) by lesioning the
model. In the lesioned model we set the Uncooperativeness
parameter to 0.99 (i.e. an expectation that speakers rarely
recognize when they are being under-specific, making the
absence of adjectives uninformative) and we set the prior
distribution over Redundancy to a Beta distribution with
parameters a=10 and B=1 (i.e. an expectation that speakers
are often redundant, making the presence of adjectives
uninformative). Thus, our lesioned model continues to expect
that the speaker will correctly identify the referents, but now
assumes that the wuse or absence of adjectives is
uninformative.

The bottom row of Figure 2 shows the inferences from the
lesioned model. This model showed a correlation of 0.55
(95% CI: 0.28-0.75) on belief inferences and a correlation of
0.99 (95% CI: 0.989-0.996) on referent inferences. Our main
model was reliably better than the lesioned model on belief
inferences (correlation difference = 0.4; 95% CI on
difference: 0.22-0.67) but not on referent inferences
(correlation difference = 0.0006; 95% CI on difference: -
0.0039 - 0.0051).

Although the lesioned model was generally able to infer
referents (largely because the target is unambiguously
identifiable in all cases, except when the speaker is under-
specific), Figure 2 suggests that the lesioned model was less
sensitive to features of the trials relative to participants. To
investigate this, we did a post-hoc analysis of trials where the
lesioned model failed to identify the referents. Two of these
corresponded to the trials shown in Figures 1d and 1f. Figure
3 shows the lesioned model’s inferences along with
participant judgments in these trials. In the displays in Figure
1d, the lesioned model incorrectly infers that the blind spot is
in the top left cell and fails to make any inferences about
which circle the speaker is talking about in the left-hand side
display (see left display in Figure 3). This shows how loss of
sensitivity to contrast impairs the model’s ability to infer the
referents and the blind spot. In Figure 1f, participants make
stronger inferences about the speaker’s blind spot and the
inferred referent in the right display. Our lesioned model fails
to derive these inferences because it does not rely on the
under-specification to infer the blind spot and consequently
uncover the referent (see right display in Figure 3).

o

Figure 3. Model lesion against participant judgments. Predictions
correspond to the trials shown in Figure 1d (left) and Figure 1f (right).
Consistent with Figure 1, average participant judgments are shown in red.
Model lesion predictions are shown in green.

Discussion

We presented a formal model of definite reference
interpretation and common ground that captures three
fundamental = pragmatic  inferences in  referential
communication: what the speaker is referring to, what she
knows about the context, and what preferences she has when
choosing referential expressions. Our model inferences
closely mirrored participant judgments, while an alternative
model compromising the hearer’s expectations of
cooperativeness and redundancy was less successful.



Our model shows that common ground can be computed as
part of the process of reference assignment, rather than being
established a priori, as assumed in the Director task (e.g.,
Keysar et al., 2003) and related computational models (Heller
et al., 2016). Our results are consistent with work showing
that participants in a modified version of the Director task can
derive sophisticated epistemic inferences given a speaker’s
choice of referential expression (Rubio-Fernandez; 2017).
Critically, participants in that study derived pragmatic
inferences spontaneously, suggesting that interlocutors can
derive epistemic inferences in referential communication
without being instructed to do so.

Although our model performs three inferences from each
utterance (see Eq. 1), here we only evaluated people’s
inferences about speaker’s intended referents and their
beliefs, but we did not ask participants to explicitly infer the
speaker’s level of redundancy. Existing work already
suggests that people can infer speaker’s redundancy and
adjust their inferences accordingly (Grodner & Sedivy,
2011). In future work, we will evaluate this capacity
quantitatively.

Similarly, our model framework and implementation can
handle an arbitrary number of useful adjectives, favoring
more informative adjectives over less informative ones, and
combining them when necessary. Here we focused on simple
situations where the potential referents could only be
disambiguated by their shape or their color. In future work,
we will explore situations where speakers have several ways
of drawing contrast to evaluate how listeners adjust their
inferences based on their priors for redundancy (e.g., listeners
tend to expect color to be used redundantly more often than
size) and the efficiency of these contrasts.

Finally, our results suggest that testing people’s ability to
derive epistemic inferences in referential communication is a
more reliable test of Theory of Mind use in communication
than the standard Director task, which imposes highly
unnatural demands on participants’ selective attention.
Although our model fits do not imply that participants were
actively mentalizing when doing our task, they do show that,
if people are not mentalizing, whatever mechanisms they use
to circumvent mentalistic reasoning must be sufficiently
complex to accurately approximate Theory of Mind
inferences.
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