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Humans actively explore their surroundings and learn from 
their own experience. Even young children direct their own 
learning through exploratory play, and update their beliefs 

from self-generated evidence1–4. However, exploration involves 
uncertainty; learners may not know the time and effort required to 
make a discovery, and even after much trial and error, they may fail 
to discover anything at all. Such uncertainty can make it especially 
challenging for novice learners to decide what or when to explore, 
because they often lack the knowledge or experience to estimate the 
expected costs and rewards of exploration.

Social learning provides an effective solution to this problem. 
Teaching, in particular, is a powerful way to facilitate learning. 
When knowledgeable individuals teach what they know, naïve 
learners can avoid the uncertainties of exploration and acquire 
useful knowledge, even when self-guided discovery is too costly5. 
For instance, a hunter-gatherer who already knows how to make 
fire can save others from hours of trial and error by showing them 
how to make it. However, teaching requires an investment of time, 
effort and resources6, making it necessary for teachers to be selective 
in what they choose to teach. Indiscriminately teaching anything 
would be inefficient; not all of one’s knowledge is useful for others, 
and some knowledge can be acquired easily without being taught, 
or only through direct experience. Relying on learners’ requests to 
decide what to teach would also be ineffective; ignorant learners 
may be unaware of what they need to learn or unable to communi-
cate their requests. Thus, while teaching yields significant benefits 
for learners, it also presents a decision problem for teachers: what 
needs to be taught, and what can be left for learners to discover on 
their own?

As adults, we share the intuition that it is better to teach things 
that are useful, novel, and interesting for others (i.e., rewarding), or 
difficult, risky or even impossible to discover by oneself (i.e., costly). 
Although what humans find useful, interesting, or difficult can dif-
fer between cultures, change across generations and develop over 
a lifetime, the tendency to prioritize information that one consid-
ers to be rewarding and costly to acquire may be grounded in basic 
social cognition. We propose that the human ability to decide what 

to teach is rooted in early-developing capacities to reason about 
other minds, not only in terms of what other people know or want 
(theory of mind)7, but also what is rewarding for other people to 
acquire and what is costly to achieve on their own (naïve utility cal-
culus)8. We formalize these intuitions as decisions that maximize 
learners’ expected utilities, and demonstrate that even young chil-
dren can decide what to teach based on an intuitive cost–benefit 
analysis of learning from instruction versus learning from explora-
tion—arguably the most and least teacher-driven forms of learning.

Unlike observational learning or imitation, instruction involves 
a knowledgeable teacher who deliberately provides helpful infor-
mation for the learner, often accompanied by ostensive cues (for 
example, pointing) that signal pedagogical communication of infor-
mation. Some theories suggest that young children are prepared to 
interpret information in these contexts as conveying generic, shared 
knowledge9, while others emphasize the role of mutual, recursive 
mental-state reasoning between the teacher and the learner that 
constrains the learner’s inferences10,11. Yet the majority of theoreti-
cal and empirical work on human pedagogy has focused on how 
learners benefit from teaching, with an implicit assumption that 
the teacher already knows what knowledge or concept needs to be 
taught. We address a question that complements this previous work: 
how do teachers decide what to teach in the first place?

Our work is grounded in a broader computational framework 
that has successfully captured how humans interpret others’ behav-
iours through a naïve utility calculus8: people have an intuitive theory 
of agents as ‘utility maximizers’, expecting agents to pursue reward-
ing goals while minimizing the associated costs12–14. Critically, how-
ever, agents can only maximize their utilities insofar as they have an 
accurate representation of the costs and rewards of their actions; a 
learner who is ignorant of, or even mistaken about, the cost–reward 
structure of the world might incur significant costs only to gain little 
to no reward. The key insight behind our model is that a ‘teacher’—
a knowledgeable agent who already understands the cost–reward 
structure of the world—can help the learner reduce or eliminate the 
costs and uncertainties of exploration. By selectively teaching what 
is rewarding and/or costly to learn, the teacher can ensure that the 
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learner reaps the rewards of learning while also bypassing poten-
tially extreme costs. Importantly, such prioritization of high-utility 
information still allows the learner to explore and make additional 
discoveries, even if the teacher cannot teach everything.

Following the focus of our computational model, our experi-
ments are designed to test young children’s ability to decide what 
it is best to teach and what can be left for the learner to discover on 
their own. Anticipating what information would be rewarding for 
others and how costly it would be for them to acquire it on their 
own involves a host of cognitive capacities that go far beyond a gen-
eral motivation to help or teach; one must reason about the process  
by which a naïve learner might explore their environment, and 
understand what information would be more rewarding for the 
learner, or more costly for the learner to discover without being 
taught. Thus, one might assume that such sophisticated decision-
making abilities would take years of experience or even explicit 
training to develop. However, there are reasons to believe that the 
prerequisite representational and inferential capacities for such rea-
soning are present in childhood.

First, children, as learners themselves, selectively engage in active 
exploration, especially when additional discovery is likely4,11,15,16, 
and rationally decide whether to explore or seek help17,18. This 
work suggests that an intuitive understanding of the relative ben-
efits of social learning and self-guided exploration may be present 
early in life. Second, by the beginning of formal schooling, children 
already have an abstract understanding of what constitutes infor-
mative teaching (that is, the information communicated should be 
accurate and sufficient, yet not superfluous), and readily evaluate 
others’ teaching accordingly19–23. As teachers themselves, children 
can also tailor the content of their communication based on the 
learner’s goal or knowledge state24–26, readily selecting appropriate 
evidence to communicate a concept27, correct another’s false belief28 
or disambiguate a causal system22,29. In particular, when evidence is 
physically costly to generate (for example, demonstration requires 
multiple actions or walking over a distance), 5- to 6-year-olds resist 
providing unnecessary information22,29, suggesting that children are 
sensitive not only to the value of information but also the cost of 
generating it.

Yet a hallmark of helpful, effective teaching is its potential to 
make learning less costly from the learner’s perspective; a ten-
dency to minimize the overall cost of generating information could 
emerge solely from the teacher’s motivation to minimize their own 
costs, rather than a regard for the learner. Given that even infants 
and young children expect others to act in ways that maximize 
their expected utilities30–34, an important open question is whether  
children can actively choose to maximize others’ utilities. Consistent 
with this possibility, one study has reported that children prioritize 
teaching what was taught by an adult (over what children discov-
ered on their own) when the taught information is causally opaque 
and thus difficult to discover35. However, children in this study 
could have privileged this information because it was provided  
by a knowledgeable adult or because the taught information was 
novel or surprising to them. To test whether young children have a 
genuine understanding of the utilities of others’ learning, it is criti-
cal to distinguish between the role of reward (that is, the pleasure 
or benefit of knowing something) and the role of cost (that is, the 
expected time or effort required to acquire the knowledge) in chil-
dren’s decisions.

Combining developmental and computational approaches, the 
current work provides a unifying utility-based framework for how 
humans decide what to teach. While previous utility-based models 
of social reasoning have focused on formalizing people’s inferences 
about others’ actions or mental states8,13,14, here we are concerned 
with how these inferences inform people’s decisions about what it 
is best to teach. Using a family of computational models, we gen-
erate precise, quantitative predictions about how a rational teacher 

decides what to teach depending on how this choice modulates oth-
ers’ expected utilities. We then ask whether the ability to consider 
the expected costs and rewards of learning (from exploration and 
from instruction) is present even early in childhood, by comparing 
children’s decisions with the model predictions. We chose 5–7 years 
as our target age range, because children of this age consider others’ 
mental states to decide what to communicate as teachers22,28,29, and 
can infer and integrate expected costs and rewards when reasoning 
about others’ goal-directed actions8.

Consider a scenario in which an agent (the child participant) has 
to decide which of two causal devices a teacher (the experimenter) 
should teach to a naïve learner (note that children were not asked 
to teach the learner themselves; see Methods). Each device has a 
distinct causal mechanism that generates an effect, and the child 
and the experimenter already know how to activate both devices. 
The learner will learn how to activate the device that is chosen by 
the participant, but because only one device can be taught, they will 
also have to figure out how to activate the other device through 
their own exploration. Formally, this decision can be described as 
a choice between two possible teaching plans (that is, teach device 
X and let the learner explore device Y, or vice versa) that differ 
in their expected utilities from the learner’s perspective. For each 
teaching plan, the learner’s expected utility can be described as the 
difference between their expected rewards and costs of learning one 
device through instruction and learning the other through explora-
tion (Fig. 1a). By choosing to teach the device that generates a more 
rewarding effect or has a causal mechanism that is more costly to 
discover, the participant can maximize the learner’s expected utility.

In our experiments, the devices were causal toys that varied in 
discovery reward (high or low) and discovery cost (low, medium, 
high or extra-high). High-reward toys had an orb that spun around 
and lit up in different colours when activated. Low-reward toys 
played music. Low-cost toys had one big button (enabling almost 
immediate discovery). Medium- and high-cost toys had one big but-
ton and six small buttons. The medium-cost toy required pressing 
one particular small button to activate it and thus was less difficult 
to figure out than the high-cost toys, which required pressing the 
big button and a particular small button at the same time. Activating 
the extra-high-cost toy also required simultaneously pressing the 
one big button and one particular small button, but it had 11 small 
buttons, entailing much trial and error before discovery.

Our main and alternative models formalize different hypotheses 
about which variables children consider when deciding which toy 
the experimenter should teach. The main (full) model assumes chil-
dren will consider both the costs and rewards of the toy that would 
be taught (that is, the chosen toy’s activation cost and activation 
reward), as well as the costs and rewards of the toy the learner would 
explore on their own (that is, the unchosen toy’s discovery cost and 
discovery reward), and select the teaching plan with the higher net 
utility as the best one to execute.

Four alternative models consider subsets of these variables and 
represent possible developmental changes in children’s reasoning. 
While previous work has shown an early-developing understand-
ing of others’ costs and rewards31,32,36, as well as the ability to rea-
son about uncertain future events37–39, it is possible that children 
do not consider all of the variables represented in the full model 
to decide what to teach. Children might consider some variables to 
be less relevant, or lack the representational or processing capaci-
ties to integrate them into a single decision. For instance, since it is 
easy to activate the toys and obtain their rewards once one knows 
how they work, children might just focus on the learner’s discovery 
costs (the costs-only model). Alternatively, since children already 
know how the toys work, they might fail to consider the discovery 
costs for a naïve learner and only consider the rewards (the rewards-
only model). It is also possible that children consider both costs and 
rewards but fail to represent the utilities of both instruction and 
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exploration; they may only concern themselves with the immediate 
consequence of what would be taught (the instruction-only model), 
or just focus on the trial and error the learner will experience trying 
to activate the unchosen toy (the exploration-only model). Figure 
1b summarizes the different considerations of the main and alter-
native models (see Methods and Supplementary Note 1 for more 
details).

In experiment 1, we tested the model predictions across six 
between-subjects conditions that presented children with different 
pairs of toys (Fig. 2b). The choice was over-determined in the first 
condition: (1) rewards and costs: one toy was higher in both cost 
and reward than the other toy (high-reward/high-cost toy versus 
low-reward/low-cost toy). In the next two conditions, either the cost 
or the reward varied across toys while the other was matched: (2) 

different costs: the toys were matched in reward but varied in cost 
(low-reward/high-cost toy versus low-reward/low-cost toy); and (3) 
different rewards: the toys were matched in cost but varied in reward 
(high-reward/low-cost toy versus low-reward/low-cost toy). In the 
remaining three conditions, a high-reward/low-cost toy was con-
trasted with a low-reward toy that varied in its discovery cost: (4) 
medium-cost conflict; (5) high-cost conflict; and (6) extra-high-cost 
conflict. These three conditions forced children to trade-off costs and 
rewards because one toy was higher in rewards while the other was 
higher in discovery costs. Formal model comparison will allow us to 
determine how well our full model captures the pattern of empirical 
data relative to the simpler alternatives. We also present additional 
experiments showing that children flexibly consider the learner’s 
utility or their own, depending on the context (experiment 2),  
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Fig. 2 | Experiment 1: stimuli, behavioural results and model predictions. a, Choices made by children in experiment 1 (n = 25 per condition). Red 
represents the number of children who selected the red toy, as shown in the top row of b, while yellow represents the number of children who selected the 
yellow toy, as shown in the bottom row of b. Error bars are bootstrapped 95% CIs. b, Schematic of the toys used in each condition of experiment 1 and as 
shown in a, c, and d. c, The full model’s predictions of children’s choices. d, Predictions made by each alternative model.
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and that they can infer the expected costs of exploration, even with-
out having personally experienced these costs (experiment 3).

results
Experiment 1. The full model predicts that children will prefer 
the high-cost/high-reward toy in the rewards and costs condition, 
because this choice maximizes the learner’s utility by both increas-
ing their rewards (ensures they will enjoy the high-reward effect) 
and decreasing their costs (they will not have to go through the 
trouble of figuring out the high-cost toy). In the different costs and 
different rewards conditions, it predicts a preference for the high-
cost toy and high-reward toy, respectively. However, note that the 
quantitative predictions are not symmetrical across these two con-
ditions; the model assumes that the relative difference in the toys’ 
rewards (reward from seeing the lights versus hearing the music) in 
the different rewards condition is more variable and smaller than 
the difference in the toys’ discovery costs in the different costs con-
dition. This assumption reflects children’s intuitions about which 
effect is ‘cooler’ (see Supplementary Methods 2 and Supplementary 
Results 2). In our conflict conditions, the model predicts that chil-
dren’s tendency to select the low-reward toy over the high-reward 
toy will increase as a function of the magnitude of the relative dif-
ference in the toys’ discovery costs.

In experiment 1, children’s (n = 25 per condition; mean 
(M) ± s.d. = 6.35 ± 0.97 years of age; 53% female) choices were 
highly consistent with the full model’s predictions. In the conditions 
where rewards and costs were not in conflict, children showed a 
tendency to choose toys that were either higher in both rewards and 
costs (rewards and costs condition: 84% (21/25); 95% confidence 
interval (CI) = 0.68–0.96), higher in costs (different costs condition: 
84% (21/25); 95% CI = 0.68–0.96) or higher in rewards (different 
rewards condition: 68% (17/25); 95% CI = 0.50–0.86). All reported 
CI’s were bootstrapped using 10,000 samples.

In the conditions involving a trade-off between costs and 
rewards, children’s tendency to select the low-reward toy over the 
high-reward toy increased as the expected discovery cost of the low-
reward toy increased. While only 44% (11/25; 95% CI = 0.25–0.64) 
selected the low-reward toy in the medium-cost conflict condition, 
this increased to 60% (15/25; 95% CI = 0.40–0.79) in the high-cost 
conflict condition and 76% (19/25; 95% CI = 0.58–0.92) in the 
extra-high-cost conflict condition. Children’s preference for the toy 
higher in cost increased linearly across these conditions (logistic 
regression: chose high-reward toy ∼ conflict condition; β = −0.226; 
t(74) = −2.348; P = 0.0216). See Fig. 2a,c for behavioural data  
and full model predictions (for more details, see Supplementary 
Results 1).

To evaluate how well each model captures children’s responses, 
we calculated the likelihood of each model generating the pattern 
of results across all six conditions. Likelihood ratios between the 
full model and each alternative model represent how well the full 
model explains the data relative to each alternative. All comparisons 
favoured the full model by at least five orders of magnitude (all like-
lihood ratios > 1 × 105), providing compelling support for the full 
model over the four alternatives (see Fig. 3). For further details on 
how each alternative model failed to capture the behavioural data, 
see Supplementary Note 1.

The tight correspondence between the behavioural results and 
the full model suggests that children in our task coordinated mul-
tiple considerations for a learner to decide what to teach. Children 
did not consider just the expected rewards or just the expected costs 
for the learner, nor did they reason about just the utility of instruc-
tion or just the utility of exploration. Rather, they considered the 
relative expected costs and rewards for a learner under different 
teaching plans (that is, learning one toy from instruction and the 
other from exploration, or vice versa) and chose the plan that maxi-
mized the learner’s expected utility.

Experiment 2. Our experimental task was designed to minimize the 
influence of children’s own utilities on their decisions; children did 
not demonstrate the toys themselves to the learner, but instead made 
a decision about which toy the experimenter should teach. Note also 
that at the time of this decision, the cost of generating an effect with 
the medium-cost, high-cost and extra-high-cost toys was low, simi-
lar to that of the alternative low-cost toy, and was always lower for 
the children than for the learner (that is, activation cost < discovery 
cost, especially for the high- and extra-high-cost toys). Thus, the 
fact that children prioritized toys that were relatively higher in cost 
suggests that they considered the learner’s expected discovery costs.

However, it is possible that children preferred teaching the 
higher-cost toy not because it would be harder for the learner 
to figure out but because their own previous success in figur-
ing out how it worked made it more attractive than the low-cost 
toy. Alternatively, the existence of multiple buttons (despite being 
inert) may have made the higher-cost toy more fun to play with or 
more visually appealing than the low-cost toy with a single button.  
If children’s choices are based on their own rewards, children might 
show a preference for the relatively higher-cost toy, even when there 
is no learner to consider, such as when they are choosing a toy with 
which they themselves would like to play. However, if children’s 
decisions about what it is best to teach are based on a genuine con-
sideration of the learner’s expected costs of exploration, they should 
prioritise high-cost toys when they are choosing a toy for the learner 
but not when choosing a toy for themselves. We tested this predic-
tion in experiment 2.

Children (n = 25 per condition; M ± s.d. = 6.19 ± 0.77 years 
of age; 54% female) were asked to choose a toy to teach a learner 
(teach condition), or for themselves to play with (play condition), 
between a pair of toys that pit the high-cost mechanism against the 
(intended) high-reward effect (high-reward/low-cost toy versus 
low-reward/high-cost toy). The teach condition was a replication of 
experiment 1’s high-cost conflict condition, whereas the play condi-
tion was identical to the teach condition except for the final prompt: 
children were asked with which toy they would like to play.

As predicted, children’s choice of toys differed across conditions: 
they were more likely to choose the low-reward/high-cost toy in 
the teach condition than in the play condition (72% (18/25) ver-
sus 20% (5/25); two-tailed Fisher’s exact test, P < 0.001; odds ratio 
(OR) = 9.71; see Fig. 4). In fact, the majority of children in the play 
condition chose the high-reward/low-cost toy (80% (20/25); two-
tailed binomial test, P = 0.004; 95% CI = 0.63–0.95), reflecting chil-
dren’s strong preference for the lights effect. In contrast, the majority 
of children in the teach condition chose the low-reward/high-cost 
toy (72% (18/25); two-tailed binomial test, P = 0.043; 95% CI = 0.53–
0.89; no significant difference from experiment 1’s high-cost conflict 
condition: two-tailed Fisher’s exact test, P = 0.55; OR = 1.70).

These results further support the interpretation of children’s 
choices in experiment 1 in terms of the full model: their decisions 
to teach the higher-cost toys probably reflected a concern for the 
learner’s expected cost of exploration rather than a personal prefer-
ence for these toys. Furthermore, children’s decisions were flexible 
depending on the context: they prioritized the learner’s utilities over 
their own when deciding what to teach, but without a learner to 
consider, children readily considered their own preferences.

Experiment 3. Together, experiments 1 and 2 suggest that chil-
dren were sensitive to what would be difficult or time-consuming 
for others to learn from exploration and understood that teaching 
can effectively reduce or eliminate such costs. However, it remains 
unclear whether children’s decisions are based on their own past 
experience of struggling to explore the toys with high discovery 
costs, or the ability to infer the cost that others would incur to make 
a meaningful discovery even in the absence of direct previous expe-
rience with these costs.
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The ability to draw inferences about the expected costs of dis-
covery is critical for continued transmission of knowledge that 
is difficult to acquire without being taught; without this ability, a 
learner who acquires high-cost information without personally 
incurring the costs (for example, because they learned it through 
direct instruction) might fail to prioritize teaching this informa-
tion to others. Is children’s ability to consider others’ costs limited 
to what they have directly experienced in the past, or can they infer 
these costs without experience? Given recent work on 3- to 5-year-
olds’ abilities to estimate the relative difficulty of novel tasks40, we 
predicted that children would be able to consider the expected dis-
covery costs for a learner even in the absence of experiencing these 
costs themselves.

In experiment 3, children (n = 25 per condition; 
M ± s.d. = 6.20 ± 0.79 years of age; 60% female) made a teaching 
decision between two toys that differed only in costs (low-reward/
high-cost toy versus low-reward/low-cost toy). In the exploration 
condition, children first explored the toys to learn how they worked 
(replicating experiment 1’s different costs condition). In the instruc-
tion condition, children did not interact with the toys but watched 
the experimenter demonstrate how to activate them; thus, children 
learned from instruction without the cost of exploration. If chil-
dren’s decisions of what it is best to teach in our experiments criti-
cally depend on self-experience, they should choose the high-cost 
toy in the exploration condition but not in the instruction condi-
tion. However, if children are able to infer the discovery costs for a 
learner unfamiliar with the toys, they should select the high-cost toy 
in both conditions.

Children chose the high-cost toy in the exploration condition, 
replicating the results from experiment 1 (80% (20/25); two-tailed 
binomial test, P = 0.004; 95% CI = 0.63–0.95). Critically, children 
also showed this preference in the instruction condition (72% 
(18/25); two-tailed binomial test, P = 0.043; 95% CI = 0.53–0.89). 
We found no credible evidence of a difference across conditions 
(two-tailed Fisher’s exact test, P = 0.742; OR = 0.65; see Fig. 4),  
nor between either condition and experiment 1’s different costs 
condition (two-tailed Fisher’s exact tests; exploration: P = 1.00; 
OR = 0.77; instruction: P = 0.496; OR = 0.50). These results suggest 

that children can consider the costs of others’ learning and make 
decisions that maximize others’ utilities, even when they learned 
from direct instruction and never personally experienced the cost 
of exploration. This experiment also provides further support for 
the idea that when children selected the toys higher in discovery 
costs as the best ones to teach, they did so because they anticipated 
that the learner would find them more difficult to discover on their 
own, and not simply because children received help with these toys 
via the experimenter’s prompts (see Methods).

Discussion
Humans are incredibly sophisticated social learners. However, part 
of what allows us to learn so effectively from others is that we are 
also sophisticated social teachers. Without helpful teachers who pri-
oritize the communication of knowledge that is important yet costly 
to acquire, human social learning would not be nearly as successful. 
The goal of the current work was to understand the general princi-
ples and social and cognitive capacities that underlie our common-
sense intuitions about what it is best to teach.

Complementing previous work that focused on the actual pro-
cess of teaching a given concept, we presented a computational-
level account41 that characterizes how human teachers decide which 
concepts or what knowledge to teach, and empirically tested its 
predictions with young children. Our account is grounded in the 
theoretical proposal that humans expect other agents to act in ways 
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that maximize their utilities8,13,14, as well as recent empirical work on 
early-developing abilities to reason about the utilities of others’ goal-
directed actions31,32,34. The full model formalizes our main hypothe-
sis that children can consider the costs and rewards of learning from 
instruction and learning from exploration to decide what it is best 
to teach. Children’s decisions in experiment 1 were most consistent 
with the full model, compared with simpler alternatives, and were 
graded with respect to the learner’s utility. These results suggest 
that children have an abstract understanding of how teaching and 
exploration differentially influence the utilities of learning and can 
integrate these variables into a single teaching decision.

Additionally, children considered the learner’s costs of explora-
tion selectively when deciding what to teach, but not when deciding 
what to play with (experiment 2), even when they had not person-
ally incurred these costs (experiment 3). Since even adults often 
fall victim to a ‘curse of knowledge’, both in everyday reasoning42,43 
and teaching44, it is impressive that children chose to teach what 
would be more costly to learn from a naïve learner’s perspective 
even though it was no longer costly for them (that is, both toys were 
easy to activate once learned). Given that even infants expect other 
agents to avoid costly options and pursue goals that are lower in 
costs31,32,45, one might have expected children to have chosen the toy 
that was less costly to discover as the best one to teach. Yet, children 
made the opposite choice, suggesting that they understood the goal 
of teaching (that is, maximizing the learner’s utilities) and could dis-
tinguish the cost of discovering how the toy works from the cost of 
activating it.

Our experiments were designed to maximize the chances of 
identifying such competence in young children. First, we situated 
the task in a dyadic, pedagogical context with which US children are 
highly familiar, where the learner’s goals (the learner wants to learn 
about both toys) and the teacher’s knowledge and motivation (the 
experimenter knows about both toys and wants to help the learner) 
are made clear. Second, by asking children to choose which toy the 
experimenter should teach (rather than asking children to directly 
teach the learner), we were able to isolate children’s ability to make a 
prosocial decision for the learner without the influence of their own 
costs and rewards as teachers. Third, the simple forced-choice task of 
teaching one of two toys (and leaving the other to be explored) was 
a distillation of the real-world constraints that not everything can be 
taught and that selecting to teach certain concepts may come at the 
expense of teaching others. Note that teaching either toy was helpful; 
by asking children to choose just one, we could identify which teach-
ing plan they considered more helpful. Beyond making proactive 
decisions to protect others from failing46, children also anticipate the 
expected costs of discovery, and prioritize what to teach in ways that 
help others to learn more effectively and efficiently.

The current work is an example of how developmental experi-
ments and theory-driven computational modelling can mutu-
ally inform one another. Our full model assumes that children 
are able to reason about rewards and costs simultaneously, and 
trade-off between them. While integration of rewards and costs 
is a basic assumption in utility-based reasoning, one might ques-
tion whether such integration is necessary to explain children’s 
decisions. For example, children in our study might have relied 
on a set of rules or heuristics that approximate reasoning about 
utilities rather than simultaneously considering both rewards and 
costs (see Supplementary Note 1). Given that children of this age 
are unlikely to have acquired explicit rules about what to prioritize 
when teaching others, even the use of such heuristics that systemati-
cally consider either costs or rewards (and especially the tendency 
to preferentially teach high-cost options) would still be an impres-
sive feat. The conflict conditions in experiment 1, however, provide 
some evidence against such heuristics-based accounts. In these con-
ditions, the difference in expected rewards is held constant while 
the difference in expected discovery costs between the two toys 

increases. If children were simply considering either the difference 
in rewards or the difference in costs, their decisions would not dif-
fer across these conditions. Children’s tendency to select the higher-
cost toy gradually increased with the magnitude of the difference in 
discovery costs, suggesting a trade-off between the toys’ discovery 
costs and rewards. Collectively, our work shows how smart, con-
siderate teaching decisions can naturally emerge from early-devel-
oping social and cognitive capacities (that is, an understanding of 
what others want or know47, as well as what is costly or rewarding 
for others8) without the need to posit explicit norms about what 
constitutes helpful teaching. A similar approach has been used to 
derive Gricean maxims from utility-theoretic models of pragmatic 
communication48.

Further work is still needed to provide a more rigorous test of the 
hypothesis that children’s teaching decisions vary flexibly as a func-
tion of the relative differences in the toys’ costs and rewards. This 
endeavour would benefit from finding more precise ways of esti-
mating the shape of children’s subjective cost and reward functions. 
We made reasonable simplifying assumptions to estimate these 
functions (see Supplementary Note 1), and our full model captured 
the overall pattern of children’s choices at the group level. However, 
it cannot capture potential individual differences in the exact shape 
of these functions. Developing models that can predict children’s 
choices with better quantitative fit, and linking group-level predic-
tions to individuals’ behaviour, remain important challenges for 
future work.

We aimed to formalize the basic ingredients that contribute to 
human teaching decisions within the broader context of utility-
based reasoning. From this perspective, our full model is by no 
means a complete model of human teaching. Yet a key strength is 
that it easily lends itself to extensions that incorporate additional 
factors that might influence teaching decisions in more complex, 
real-world contexts. For example, real-world teaching often involves 
flexibly deciding how much time or effort one ought to invest in 
teaching others depending on the context. Although we deliberately 
designed the current task to isolate children’s consideration of oth-
ers’ utilities from their own, previous work on children’s resistance 
to providing redundant information suggests that consideration of 
one’s own utilities may indeed influence children’s behaviours as 
teachers22,29. Would children be less likely to teach the toys high in 
discovery cost if these toys were also more costly to demonstrate? 
Future work might explore this question by extending the model to 
incorporate the teacher’s costs, and asking children to choose and 
directly teach one of two toys that vary in activation costs.

Our models also assumed that exploration is costly and that 
the discovery reward of a toy is the same as its activation reward. 
Correspondingly, the actual process of repeatedly pressing inert 
buttons on the (extra-)high-cost toys was not particularly exciting 
for the children. However, a helpful teacher might also understand 
that the process of exploration and discovery itself can be beneficial 
for learning49 and that pursuing a challenging goal may be intrinsi-
cally rewarding50. Anecdotally, two children in experiment 1 chose 
to teach the low-cost toy and explicitly mentioned the value of let-
ting the learner explore the more challenging toy on their own (see 
Supplementary Results 1). Although we can incorporate the added 
value of exploration and discovery into our model by sampling dif-
ferent rewards for activation and discovery, measuring and manipu-
lating these variables remains a challenge for empirical work. How 
and when children acquire such a nuanced understanding of the 
costs and rewards of learning is an intriguing topic for research, 
with deep implications for promoting motivation in classrooms and 
informal learning contexts51.

Children’s success in our study raises questions about what really 
develops and why these children might still fare poorly as teachers 
in the real world. One possibility is that children’s ability to con-
sider more abstract costs and rewards develops over time. Our task 
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involved concrete, perceptual rewards and physical costs, which 
lend themselves well to formalization, and are easy for even young 
children to understand. However, adult teachers also understand the 
long-term expected utility of generalizable information and skills 
(for example, natural pedagogy9) and discovery costs that cannot be 
gleaned from visual complexity, such as causal complexity52 or the 
physical and mental demands of novel tasks40. Children’s ability to 
consider others’ utility functions that differ from their own may also 
continue to develop. In our task, because children were presented 
with a generic learner whose specific preferences and competen-
cies were unknown, children might have reasonably assumed that 
what was rewarding or costly for them in the past would also be 
rewarding or costly for the learner. Making teaching decisions for 
others who have quite different utility functions than they do (for 
example, different preferences or competencies31,36,53) may be more 
challenging and improve in tandem with children’s theory of mind 
and executive control25,28,54.

The ability to prioritize teaching knowledge that yields a higher 
utility for the learner, when implemented by multiple individuals 
over generations, may be a powerful force that shapes our collec-
tive knowledge. It would allow human societies to incorporate new 
discoveries, preserve timeless wisdom, and filter out obsolete skills 
and knowledge, thereby curating a collection of cultural knowledge 
deemed valuable by its members. Our computational account pro-
vides a possible explanation for how such curation might occur. 
Furthermore, over time, the tendency to teach high-utility knowl-
edge may give rise to different cultural norms about what it is best 
to teach. The cognitive mechanisms that subserve the formation of 
such norms might also allow them to diversify and evolve over time; 
as the intellectual and technological repertoire of a society grows 
and changes, its members can reassess the utility of existing knowl-
edge and flexibly update the content of these norms to reflect the 
changes in the cost–reward structure of their environment.

Relatedly, human societies show significant variability in the 
degree to which they rely on direct pedagogy as the primary means 
of knowledge transfer (as opposed to observation or exploration)55,56. 
Our work suggests that such variability might reflect the relative 
utility of direct instruction, compared to other ways of learning, 
given the nature of the knowledge and skills to be acquired; teach-
ing may not be necessary if learning can occur through other means 
that do not require a ‘teacher’ who is willing to increase others’ utili-
ties at the expense of their own6,57. Compared with more abstract 
knowledge (such as algebra), practical skills (such as cooking) or 
social conventions (such as who sits where during mealtime) may 
be easier to acquire through observation and imitation. In such 
cases, knowledgeable individuals might slow their actions or toler-
ate onlookers as a way to facilitate others’ learning. But even the 
tendency to slow down or allow onlookers may be higher for goals 
that are more costly to achieve for the observer5,55. It is thus possible 
that selective communication via an intuitive cost–benefit analysis 
is a culturally universal yet distinctively human ability that extends 
beyond pedagogical contexts. However, our work leaves open the 
question of whether prioritization of high-utility information is 
observed in non-pedagogical social learning contexts or in cultures 
where direct instruction is rare16,55.

Theories of human learning have often contrasted the value of 
active exploration and discovery1–4,49,58 and the importance of social 
learning9,59–63. These views have fuelled theoretical debates about the 
relative efficacy of instruction versus active learning11,64, and have 
raised practical questions in real-world classrooms about whether 
to teach students or encourage them to figure things out on their 
own. The current work provides a different perspective: rather than 
replacing or hindering exploration, teachers can optimize learn-
ing by ensuring that learners acquire knowledge that is important  
yet difficult to learn from exploration, while guiding learners to 
explore things that can or should be acquired on their own. Overall, 

we provide the theoretical, formal and empirical groundwork for 
studying the development of human intuitions about what to teach. 
Even in their early years as learners, human children understand 
how to selectively share what they know to help others learn.

methods
Implementation of the main (full) model. Given two devices (toy X and toy Y), 
our main (full) model compares the learner’s expected utilities under the following 
two teaching plans: teachX (and let the learner explore Y) and teachY (and let the 
learner explore X). The learner’s expected utility under a given teaching plan is 
defined as the linear sum of the following components: after being taught a toy, the 
learner incurs a small activation cost (CA) to obtain the activation reward (RA) of 
this chosen toy; in exploring the other toy (the unchosen toy), the learner incurs 
a discovery cost (CD), and obtains the discovery reward (RD) upon successful 
discovery. Making a decision about what to teach (and consequently what the 
learner will explore) is formalized as choosing the plan that maximizes the learner’s 
expected utilities (see Fig. 1a).

The cost function is assumed to be the physical cost of pressing buttons, and is 
based on the toys’ physical properties. The activation cost (CA) is the number of button 
presses required to activate the toy: 1 for low-cost toys and the medium-cost toy 
(all of which have a single-button mechanism), and 2 for the high-cost toys and the 
extra-high-cost toy (all of which require two specific buttons to be pressed together). 
These values are both small, reflecting the fact that once an agent knows how the two 
toys work, both are easy to activate. The discovery cost (CD) of a toy is the expected 
number of button presses required for a naïve learner to explore and discover how 
to activate it, assuming that the learner would first try simpler actions (pressing one 
button at a time) and then try more complex actions (pressing combinations of two 
buttons) once the simpler hypothesis space has been depleted (low-cost toys: CD = 1; 
medium-cost toy: CD = E(CD) = 4; high-cost toys: CD = E(CD) = 29; extra-high-cost toy: 
CD = E(CD) = 79; see Supplementary Note 1 for more details).

The activation reward (RA) and discovery reward (RD) of a toy are assumed to 
be equal, but variable across participants, to allow for the possibility that different 
participants assign different subjective rewards to each effect. The toys’ rewards 
were sampled from beta distributions (ranging from 1–87, to allow the maximum 
reward of a toy to be as high as three times the expected discovery cost of the 
high-cost toys, which is also higher than the expected discovery cost of the extra-
high-cost toy). We fit these distributions such that there was an 80% probability 
that a sample from the lights (high-reward) distribution would be higher in value 
than a sample from the music (low-reward) distribution, matching empirical data 
on children’s relative preference for these causal effects (80% of children (20/25) 
preferred the lights; see Supplementary Methods 2, Supplementary Results 2 and 
Supplementary Note 1 for more details).

It is possible that children’s reasoning about rewards and costs is more complex 
than how we have implemented these functions. For example, cost may not increase 
linearly with each button press, and reward might be the highest on first observation 
and then degrade with each subsequent observation due to decreasing novelty. In 
the context of our experiment, model predictions depend on the relative reward 
and cost rather than their absolute values; identifying the precise shape of children’s 
cost and reward functions is beyond the scope of the current work. Thus, we adopt 
the simplest cost function that is consistent with how children actually explored the 
medium-cost, high-cost and extra-high-cost toys (that is, most children first pressed 
each button individually before attempting combinations of buttons), and the 
simplest reward function where rewards remain constant across time. Some children 
might also assume an extra value to the process of exploration and discovery (for 
example, RA < RD), or consider the utility of the teacher. See Discussion for how the 
current model could be extended to incorporate these possibilities.

Additionally, we considered the probability (PE) that the learner would explore 
the unchosen toy. This exploration certainty parameter (higher means more 
certain) reflects the idea that teaching ensures immediate learning and guarantees 
a reward, while there is more uncertainty about the learner’s future exploratory 
behaviours and whether or not they will successfully activate the unchosen toy. For 
example, they may never explore this toy, or even if they do, they might not figure 
it out, which is of particular concern for the high-cost and extra-high-cost toys.

Our full model considers all of these components to compute the learner’s 
expected utilities under each teaching plan (see Fig. 1), and chooses the plan 
with the higher overall expected utility for the learner. To generate the model 
predictions reported in the main text (Fig. 2c,d), we used PE = 0.5, as well as a small 
degree of noise (α = 0.1) in children’s choices. However, model fits are robust to: (1) 
different distributions of the reward space; (2) different ranges of reward values; 
and (3) different values of PE and α (see Supplementary Note 1 for details). Model 
code and full predictions can be found at https://osf.io/wunbq/.

Participants. We recruited 250 5-, 6- and 7-year-olds (M ± s.d. = 6.29 ± 0.90 years 
of age; 55% female; n = 25 per condition for all experiments) for experiments 
1–3 from a local children’s museum in the San Francisco Bay Area. Experiment 
1 involved 150 participants aged 5, 6 and 7 years (M ± s.d. = 6.35 ± 0.97 years; 
53% female). An additional nine children were excluded from the analysis due 
to difficulty understanding English (four), a missing date of birth (two), an 
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inability to learn the mechanism of the extra-high-cost toy (two) or parental 
interference (one). Experiment 2 involved 50 participants aged 5, 6 and 7 years 
(M ± s.d. = 6.19 ± 0.77 years; 54% female). An additional three children were 
excluded from the analysis due to a missing date of birth (one), parental 
interference (one) or experimenter error (one). Experiment 3 involved 50 
participants aged 5, 6 and 7 years (M ± s.d. = 6.20 ± 0.79 years; 60% female). An 
additional five children were excluded from the analysis due to experimenter error 
(two) or not completing the procedure (three).

No statistical methods were used to predetermine sample sizes, but our 
sample sizes were pre-set and similar to those reported in previous publications 
on children’s teaching22,29,35. All procedures were approved by Stanford University’s 
Institutional Review Board for Human Subjects Research. Informed consent was 
obtained from the legal guardians of all child participants.

For experiment 1, participants were randomly assigned to the different rewards 
and high-cost conflict conditions, followed by the rewards and costs and different 
costs conditions. The medium-cost and extra-high-cost conflict conditions were 
added during the review process (participants were randomly assigned to either 
condition). See https://osf.io/5dmga/ for preregistration, and Supplementary 
Results 1 for further statistical analyses of the behavioural results. In experiment 2, 
we first collected data for the play condition, followed by the teach condition  
(a replication of the high-cost conflict condition in experiment 1). In experiment 
3, we first collected data for the instruction condition, followed by the exploration 
condition (a replication of the different costs condition in experiment 1). Data 
collection and analysis were not performed blind to the conditions of the 
experiments. Children’s responses were recorded offline from the video by S.B. 
and a second researcher blind to the experimental hypotheses. See Supplementary 
Methods 1 for details.

Materials. We constructed seven rectangular toys (25 cm × 15 cm × 15 cm) from 
foam board, felt, push-buttons and electrical circuits. Low-cost toys had one (large) 
button that activated the toys’ effects. The medium-cost toy had one large and six 
identical small buttons; pressing one of the small buttons activated the toy. The 
high-cost toys also had one large and six identical small buttons, but to activate 
these toys, the large button and one particular small button had to be pressed at 
the same time. The extra-high-cost toy had one large button and 11 identical small 
buttons, and just like the high-cost toys, to activate this toy, the large button and 
one particular small button had to be pressed at the same time. When activated, 
low-reward toys played music, whereas high-reward toys had a plastic orb that lit 
up different colours and spun around (see Fig. 2b for a schematic of the toys used 
in each condition of experiment 1, and Fig. 4 for a schematic of the toys used in 
experiments 2 and 3).

Procedure. Children were tested individually in a quiet room separate from the 
main exhibits of the museum. Experiment 1 began with the discovery phase. The 
experimenter produced two toys (determined by condition), explained that she 
did not know how the toys worked, and asked children for help figuring them 
out. Children explored both toys until they activated them. Children quickly 
figured out low-cost toys, immediately pressing the single button (experiment 1: 
Mdiscovery time ± s.d. = 0.28 ± 1.02 s). Figuring out the medium-cost toy took longer 
(experiment 1: Mdiscovery time ± s.d. = 9.33 ± 6.37 s). Figuring out the high-cost toys 
and extra-high-cost toy took much longer (experiment 1: high-cost toys: Mdiscovery 

time ± s.d. = 81.22 ± 49.42 s; extra-high-cost toy: Mdiscovery time ± s.d. = 94.52 ± 61.79 s) 
and involved pressing many buttons. If children stopped exploring the high-cost 
or extra-high-cost toys before successfully activating them, the experimenter 
prompted them to continue, and provided suggestions of what they could try next 
(for example, “I wonder what would happen if you pressed two buttons at the same 
time.”). These prompts were delivered as though they were spontaneous, and with 
uncertainty, to keep up the charade that the experimenter did not know how these 
toys worked. Critically, the experimenter never explicitly told or showed children 
how to activate the toys. Once children figured out both toys, they were asked 
to demonstrate each toy twice (with the order counterbalanced) to ensure that 
they knew how to activate the toys and had the chance to experience the ease of 
activating them after discovery (i.e., the minimal activation cost).

Next came the choice phase. The experimenter explained that her friend would 
play with the toys later all by herself but knew nothing about them, so beforehand, 
the experimenter would help by teaching her how one of the toys worked. The 
experimenter then asked: “Which toy should I teach her?” Children selected a toy 
and explained their choice. Children also answered two follow-up questions: (1) 
which toy was harder to figure out?; and (2) which effect was cooler?

In experiment 2, the teach condition was identical to experiment 1’s high-
cost conflict condition. The only difference was in the choice phase of the play 
condition; the experimenter said she needed to work on something and asked the 
children to choose one toy to play with while she was gone. In experiment 3, the 
exploration condition was identical to experiment 1’s different costs condition. 
The only difference was in the instruction condition; a demonstration phase 
replaced the discovery phase. Children never interacted with the toys; instead, the 
experimenter taught children how the toys worked: she pressed the appropriate 
buttons to generate the effect, and added, “this is the only way to make the toy go” 
(see Supplementary Methods 1).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data and analysis scripts that support the findings of this study are available at 
https://osf.io/wunbq/.

Code availability
Model code and full predictions can be found at https://osf.io/wunbq/.

Received: 7 September 2018; Accepted: 29 August 2019;  
Published: xx xx xxxx

references
 1. Piaget, J. The Child’s Conception of the World (Harcourt Brace  

Jovanovich, 1929).
 2. Singer, D. G., Golinkoff, R. M. & Hirsh-Pasek, K. Play = Learning: How Play 

Motivates and Enhances Children’s Cognitive and Social-Emotional Growth 
(Oxford Univ. Press, 2006).

 3. Schulz, L. The origins of inquiry: inductive inference and exploration in early 
childhood. Trends Cogn. Sci. 16, 382–389 (2012).

 4. Stahl, A. E. & Feigenson, L. Observing the unexpected enhances infants’ 
learning and exploration. Science 348, 91–94 (2015).

 5. Kline, M. A. How to learn about teaching: an evolutionary framework for the 
study of teaching behavior in humans and other animals. Behav. Brain Sci. 
38, e31 (2015).

 6. Caro, T. & Hauser, M. Teaching in nonhuman animals. Q. Rev. Biol. 67, 
151–174 (1992).

 7. Wellman, H. & Cross, D. Theory of mind and conceptual change. Child Dev. 
72, 702–707 (2001).

 8. Jara-Ettinger, J., Gweon, H., Schulz, L. E. & Tenenbaum, J. B. The nave utility 
calculus: computational principles underlying commonsense psychology. 
Trends Cogn. Sci. 20, 589–604 (2016).

 9. Csibra, G. & Gergely, G. Natural pedagogy. Trends Cogn. Sci. 13,  
148–153 (2009).

 10. Shafto, P., Goodman, N. D. & Griffiths, T. L. A rational account of 
pedagogical reasoning: teaching by, and learning from, examples. Cogn. 
Psychol. 71, 55–89 (2014).

 11. Bonawitz, E. et al. The double-edged sword of pedagogy: instruction limits 
spontaneous exploration and discovery. Cognition 120, 322–330 (2011).

 12. Baker, C. L., Jara-Ettinger, J., Saxe, R. & Tenenbaum, J. B. Rational 
quantitative attribution of beliefs, desires and percepts in human mentalizing. 
Nat. Hum. Behav. 1, 0064 (2017).

 13. Lucas, C. G. et al. The child as econometrician: a rational model of preference 
understanding in children. PLoS One 9, e92160 (2014).

 14. Jern, A., Lucas, C. G. & Kemp, C. People learn other people’s preferences 
through inverse decision-making. Cognition 168, 46–64 (2017).

 15. Schulz, L. & Bonawitz, E. Serious fun: preschoolers engage in more exploratory 
play when evidence is confounded. Dev. Psychol. 43, 1045–1050 (2007).

 16. Shneidman, L., Gweon, H., Schulz, L. E. & Woodward, A. L. Learning from 
others and spontaneous exploration: a cross-cultural investigation. Child Dev. 
87, 723–735 (2016).

 17. Gweon, H. & Schulz, L. 16-month-olds rationally infer causes of failed 
actions. Science 332, 1524 (2011).

 18. Was, A. M. & Warneken, F. Proactive help-seeking: preschoolers know when 
they need help, but do not always ask for it. Cogn. Dev. 43, 91–105 (2017).

 19. Sobel, D. M. & Kushnir, T. Knowledge matters: how children evaluate the 
reliability of testimony as a process of rational inference. Psychol. Rev. 120, 
779–797 (2013).

 20. Koenig, M. A. & Harris, P. L. Preschoolers mistrust ignorant and inaccurate 
speakers. Child Dev. 76, 1261–1277 (2005).

 21. Gweon, H. & Asaba, M. Order matters: children’s evaluation of 
underinformative teachers depends on context. Child Dev. 89,  
e278–e292 (2018).

 22. Gweon, H., Shafto, P. & Schulz, L. Development of children’s sensitivity  
to over-informativeness in learning and teaching. Dev. Psychol. 54,  
2113–2125 (2018).

 23. Sobel, D. M. & Letourneau, S. M. Children’s developing knowledge of and 
reflection about teaching. J. Exp. Child Psychol. 143, 111–122 (2016).

 24. Shatz, M. & Gelman, R. The development of communication skills: 
modifications in the speech of young children as a function of listener. 
Monogr. Soc. Res. Child Dev. 38, 1–38 (1973).

 25. Ziv, M., Solomon, A., Strauss, S. & Frye, D. Relations between the 
development of teaching and theory of mind in early childhood. J. Cogn. Dev. 
17, 264–284 (2016).

 26. Baer, C. & Friedman, O. Fitting the message to the listener: children 
selectively mention general and specific facts. Child Dev. 89, 461–475 (2018).

NaturE HumaN BEHaviour | www.nature.com/nathumbehav

https://osf.io/5dmga/
https://osf.io/wunbq/
https://osf.io/wunbq/
http://www.nature.com/nathumbehav


ArticlesNature HumaN BeHaviour

 27. Rhodes, M., Gelman, S. & Brickman, D. Children’s attention to sample 
composition in learning, teaching and discovery. Dev. Sci. 13, 421–429 (2010).

 28. Bass, I. et al. Children’s developing theory of mind and pedagogical evidence 
selection. Dev. Psychol. 55, 286–302 (2019).

 29. Gweon, H. & Schulz, L. From exploration to instruction: children learn from 
exploration and tailor their demonstrations to observers’ goals and 
competence. Child Dev. 90, e148–e164 (2019).

 30. Gergely, G., Nádasdy, Z., Csibra, G. & Bró, S. Taking the intentional stance at 
12 months of age. Cognition 56, 165–193 (1995).

 31. Jara-Ettinger, J., Gweon, H., Tenenbaum, J. B. & Schulz, L. E. Children’s 
understanding of the costs and rewards underlying rational action. Cognition 
140, 14–23 (2015).

 32. Liu, S., Ullman, T. D., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old  
infants infer the value of goals from the costs of actions. Science 358, 
1038–1041 (2017).

 33. Pesowski, M. L., Denison, S. & Friedman, O. Young children infer  
preferences from a single action, but not if it is constrained. Cognition 155, 
168–175 (2016).

 34. Liu, S., Gonzalez, G. & Warneken, F. Worth the wait: children trade off  
delay and reward in self- and other-benefiting decisions. Dev. Sci. 6, 
e12702–e12708 (2018).

 35. Ronfard, S., Was, A. M. & Harris, P. L. Children teach methods they could 
not discover for themselves. J. Exp. Child Psychol. 142, 107–117 (2016).

 36. Repacholi, B. & Gopnik, A. Early reasoning about desires: evidence from 
14- and 18-month-olds. Dev. Psychol. 33, 12–20 (1997).

 37. Téglás, E. et al. Pure reasoning in 12-month-old infants as probabilistic 
inference. Science 332, 1054–1059 (2011).

 38. Lagattuta, K. H. Linking past, present, and future: children’s ability  
to connect mental states and emotions across time. Child Dev. Perspect. 8, 
90–95 (2014).

 39. Atance, C. M. & O’Neill, D. K. Episodic future thinking. Trends Cogn. Sci. 5, 
533–539 (2001).

 40. Gweon, H., Asaba, M. & Bennett-Pierre, G. Reverse-engineering the process: 
adults and preschoolers’ ability to infer the difficulty of novel tasks. In Proc. 
39th Annual Conference of the Cognitive Science Society 458–463 (Cognitive 
Science Society, 2017).

 41. Marr, D. Vision: A Computational Investigation into the Human Representation 
and Processing of Visual Information (MIT Press, 1982).

 42. Camerer, C., Loewenstein, G. & Weber, M. The curse of knowledge in 
economic settings: an experimental analysis. J. Polit. Econ. 97,  
1232–1254 (1989).

 43. Birch, S. & Bloom, P. The curse of knowledge in reasoning about false beliefs. 
Psychol. Sci. 18, 382–386 (2007).

 44. Aboody, R., Velez-Ginorio, J., Santos, L. R. & Jara-Ettinger, J. When teaching 
breaks down: teachers rationally select what information to share, but 
misrepresent learners’ hypothesis spaces. In Proc. 40th Annual Meeting of the 
Cognitive Science Society 70–75 (2018).

 45. Gergely, G. & Csibra, G. Teleological reasoning in infancy: the naïve theory 
of rational action. Trends Cogn. Sci. 7, 287–292 (2003).

 46. Martin, A. & Olson, K. R. When kids know better: paternalistic helping in 
3-year-old children. Dev. Psychol. 49, 2071–2081 (2013).

 47. Wellman, H., Cross, D. & Watson, J. Meta-analysis of theory-of-mind 
development: the truth about false belief. Child Dev. 72, 655–684 (2001).

 48. Goodman, N. D. & Frank, M. C. Pragmatic language interpretation as 
probabilistic inference. Trends Cogn. Sci. 20, 818–829 (2016).

 49. Gureckis, T. M. & Markant, D. B. Self-directed learning: a cognitive and 
computational perspective. Perspect. Psychol. Sci. 7, 464–481 (2012).

 50. Inzlicht, M., Shenhav, A. & Olivola, C. Y. The effort paradox: effort is both 
costly and valued. Trends Cogn. Sci. 22, 337–349 (2018).

 51. Dweck, C. S. Mindset: The New Psychology of Success (Random House, 2006).
 52. Ahl, R. E. & Keil, F. C. Diverse effects, complex causes: children use 

information about machines’ functional diversity to infer internal complexity. 
Child Dev. 88, 828–845 (2017).

 53. Magid, R. W., Depascale, M. & Schulz, L. E. Four-and 5-year-olds infer 
differences in relative ability and appropriately allocate roles to achieve 
cooperative, competitive, and prosocial goals. Open Mind 2, 72–85 (2018).

 54. Benson, J. E., Sabbagh, M. A., Carlson, S. M. & Zelazo, P. D. Individual 
differences in executive functioning predict preschoolers’ improvement from 
theory-of-mind training. Behav. Brain Sci. 49, 1615–1627 (2013).

 55. Boyette, A. H. & Hewlett, B. S. Teaching in hunter-gatherers. Rev. Philos. 
Psychol. 9, 771–797 (2018).

 56. Legare, C. H. Cumulative cultural learning: development and diversity.  
Proc. Natl Acad. Sci. USA 114, 7877–7883 (2017).

 57. Tomasello, M. Born (and bred) to help. in Why We Cooperate 1–48 (MIT 
Press, 2009).

 58. Bruner, J. S., Jolly, A. & Sylva, K. Play: Its Role in Development and Evolution 
(Basic Books, 1976).

 59. Vygotsky, L. S. Mind in Society: The Development of Higher Psychological 
Processes (Harvard Univ. Press, 1980).

 60. Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning 
is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 
10918–10925 (2011).

 61. Tomasello, M., Carpenter, M., Call, J., Behne, T. & Moll, H. Understanding 
and sharing intentions: the origins of cultural cognition. Behav. Brain Sci. 28, 
691–735 (2005).

 62. Legare, C. H. & Nielsen, M. Imitation and innovation: the dual engines of 
cultural learning. Trends Cogn. Sci. 19, 688–699 (2015).

 63. Heyes, C. Who knows? Metacognitive social learning strategies. Trends Cogn. 
Sci. 20, 204–213 (2016).

 64. Klahr, D. & Nigam, M. The equivalence of learning paths in early science 
instruction: effect of direct instruction and discovery learning. Psychol. Sci. 
15, 661–667 (2004).

acknowledgements
We thank C. Dweck, M. C. Frank, E. Markman, M. H. Tessler, M. Asaba, K. Weisman 
and N. Vélez for helpful conversations and insightful comments. We thank G. Bennett-
Pierre, A. Singh, F. Kramer, A. Garron and N. Chandaria for help with data collection 
and coding. We are grateful to the Palo Alto Junior Museum and Zoo, the Tech Museum 
of Innovation in San Jose and the children and families who participated in this research. 
This work was funded by a John Templeton Foundation Varieties of Understanding 
grant (to H.G.), a James S. McDonnell Scholar Award (to H.G.) and an NSF Graduate 
Research Fellowship (to S.B.). In addition, this material is based upon work supported by 
the Center for Brains, Minds, and Machines (CBMM), funded by NSF-STC award CCF-
1231216. The funders had no role in study design, data collection and analysis, decision 
to publish or preparation of the manuscript.

author contributions
S.B. and H.G. conceived of and designed the experiments. S.B. collected and analysed the 
data. J.J.-E. designed, implemented and conducted the formal model comparisons, with 
assistance from S.B. and H.G. S.B., H.G. and J.J.-E. interpreted the results and wrote and 
edited the manuscript.

Competing interests
The authors declare no competing interests.

additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41562-019-0748-6.

Correspondence and requests for materials should be addressed to S.B. or H.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

NaturE HumaN BEHaviour | www.nature.com/nathumbehav

https://doi.org/10.1038/s41562-019-0748-6
https://doi.org/10.1038/s41562-019-0748-6
http://www.nature.com/reprints
http://www.nature.com/nathumbehav


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Sophie Bridgers and Hyowon Gweon

Last updated by author(s): Aug 21, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis To visualize and analyze children’s behavior we used R version 3.5.2 and the following packages: tidyverse version 1.2.1,  tidyboot 0.1.1, 
cowplot 0.9.4, and lubridate 1.7.4 
 
To implement our models and generate predictions, we used Python version 2.7.10. 
 
To visualize our model predictions and conduct formal model comparison, we used R version 3.5.2 and the following packages: tidyverse 
version 1.2.1, boot version 1.3-20, and glue 1.3.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data and analysis scripts will be made available on the Open Science Framework upon publication at the following link: https://osf.io/wunbq/
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative experimental

Research sample We recruited 250 5-, 6-, and 7-year-olds (M(SD) = 6.29(0.90)yrs; 55% female) for Experiments 1-3 from a local children’s museum; we 
recruited a separate group of 25 5-, 6-, and 7-year-olds (M(SD) = 6.15(0.93) yrs; 60% female) for the Norming Experiment from local 
children's museums. A range of ethnicities proportional to the local population were included. We selected 5 to 7 years as our target age 
range for two reasons. First, children this age understand teaching as a process that causes knowledge change (Sobel & Letourneau, 
2016), and consider others’ mental states to decide what to communicate as teachers (Gweon, Pelton, Konopka, & Schulz, 2014). 
Second, they can infer and integrate the expected costs and rewards of others’ actions in their reasoning (see Jara-Ettinger et al., 2015). 
Thus, we expected that children this age might be capable of simulating another person’s utility to make decisions on their behalf.

Sampling strategy We randomly sampled and assigned children to one of two conditions in Experiment 1 (Different Rewards and High Cost Conflict or 
Different Costs and Rewards & Costs). The Medium Cost Conflict and the Extra-High Cost Conflict conditions in Experiment 1 were run 
during the review process and children were randomly assigned to one of these two conditions. The sample size per condition (n = 25) 
was consistent with previous conditions and preregistered along with hypotheses and analyses. The preregistration for these conditions 
can be found at: https://osf.io/5dmga/  In Experiment 2, we first collected data for the Play condition, followed by the Teach condition (a 
replication of the High Cost Conflict condition in Experiment 1). In Experiment 3, we first collected data for the Instruction condition, 
followed by the Exploration condition (a replication of the Different Costs condition in Experiment 1). We pre-set our sample size at 25 
children per condition for all experiments. This was based on closely related prior work on children’s ability to teach (e.g., Ronfard & 
Corriveau 2016, Gweon & Schulz 2019, Gweon Shafto & Schulz, 2018); our sample size was similar to those used in these studies.  

Data collection Data was collected in a room separate from the main exhibits at the museum by either the first author or an undergraduate research 
assistant. Although the experimenters were not blind to the study’s hypothesis, they were thoroughly trained to ensure that the 
experiment was run without any indication of how children should respond. Children's responses were recorded by video when parent 
permission was given. We had parental permission to video record all but 9 children whose responses were recorded using pen and 
paper by the experimenter. Sometimes members of the child participant's family were in the room while the experiment was being 
conducted.

Timing Experiment 1: 4/15/2015 - 1/15/2016 and 1/12/2019 - 1/27/2019 (preregistered conditions run during the review process); Experiment 
2: 5/3/2015-3/25/2017; Experiment 3: 5/8/2016-3/25/2017; Norming Experiment: 4/23/2017 - 6/29/2017. Any breaks are due to school 
holidays, museum holidays, and travel.

Data exclusions Seventeen participants were excluded from analysis across our three experiments (see SI). In Experiment 1, 9 children were excluded 
from analysis due to difficulty understanding English (4), missing date of birth (2), an inability to learn the mechanism of the extra-high-
cost toy (2), or parental interference (1).  In Experiment 2, 3 children were excluded from analysis due to missing date of birth (1), 
parental interference (1), or experimenter error (1). In Experiment 3, 5 children were excluded from analysis due to experimenter error 
(2) or not completing the procedure (3). No children were excluded from the Norming Experiment. Exclusion criteria were pre-
established and consistent with prior research in the lab.

Non-participation Three participants began the experiment but did not complete it due to being too shy to respond to the experimenter's questions.

Randomization Allocation to experimental conditions was random. We recruited until we had 25 participants per condition per experiment that we could 
include in data analyses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment The main experimenter approached families in the museum and asked if they had children between the ages of 5 and 7 years 
and if they would be interested in participating in a study exploring children's teaching. The museum has no admission fee, and 
attracts visitors from a wide range of SES, ethnic, and cultural backgrounds.  Although it is possible that parents who willingly 
agreed to have their child participate in research may be somewhat more interested in science, we have no reason to expect 
that such a tendency would bias the results of the current study. 

Ethics oversight Stanford University's Human Subjects Research and IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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