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1 The term reinforcement learning emphasizes the learning compo-

nent, but the framework also captures how agents act under complete

knowledge of the world and the rewards in it.
We review the idea that Theory of Mind—our ability to reason

about other people’s mental states—can be formalized as

inverse reinforcement learning. Under this framework,

expectations about how mental states produce behavior are

captured in a reinforcement learning (RL) model. Predicting

other people’s actions is achieved by simulating a RL model

with the hypothesized beliefs and desires, while mental-state

inference is achieved by inverting this model. Although many

advances in inverse reinforcement learning (IRL) did not have

human Theory of Mind in mind, here we focus on what they

reveal when conceptualized as cognitive theories. We discuss

landmark successes of IRL, and key challenges in building

human-like Theory of Mind.
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Human theory of mind
Imagine going to meet a friend for coffee only to find

yourself sitting alone. You know your friend is scattered,

so you start to suspect that she got distracted on the way.

Or maybe she lost track of time, or got the date flat-out

wrong. As you’re thinking how typical this is of her, you

suddenly remember that the coffee shop has a second

location right next to your friend’s office. Without talking

to her, you realize that she probably had the other location

in mind; that (just like you) she forgot the coffee shop had

two locations; and that, for all you know, she’s probably

sitting there wondering why you didn’t show up.

To make sense of what went wrong, you had to use a

mental model of your friend’s mind—what she prefers,

what she knows, and what she assumes. This capacity,

called a Theory of Mind [1,2], lets us intuit how people

we’re familiar with might act in different situations. But,

beyond that, it also lets us infer what even strangers might
www.sciencedirect.com 
think or want based on how they behave. Research in

cognitive science suggests that we infer mental states by

thinking of other people as utility maximizers: constantly

acting to maximize the rewards they obtain while mini-

mizing the costs that they incur [3–5]. Using this assump-

tion, even children can infer other people’s preferences

[6,7], knowledge [8,9], and moral standing [10–12].

Theory of mind as inverse reinforcement
learning
Computationally, our intuitions about how other minds

work can be formalized using frameworks developed in a

classical area of AI: model-based reinforcement learning

(hereafter reinforcement learning or RL)1 . RL problems

focus on how to combine a world model with a reward

function to produce a sequence of actions, called a policy,

that maximizes agents’ rewards while minimizing their

costs. Thus, the principles of RL planning resemble the

assumptions that we make about other people’s behavior

[5,3,4]. Taking advantage of this similarity, we can for-

malize our mental model of other people’s minds as being

roughly equivalent to a reinforcement learning model

(Figure 1). Under this approach, mental-state inference

from observable behavior is equivalent to inverse rein-

forcement learning (IRL): inferring agents’ unobservable

model of the world and reward function, given some

observed actions.

Inverse Reinforcement Learning problems face a critical

challenge: We can often explain someone’s actions by

appealing to different combinations of mental states.

Returning to the coffee shop example in the introduction,

to make sense of what happened, we did not just settle on

the first plausible explanation (e.g., maybe your friend

lost track of time), but continuously sought more expla-

nations, even if the ones we already had were good

enough (because, even if they explained your friend’s

absence, they could still be wrong). Thus, mental-state

inference requires tracking multiple explanations and

weighting them by how well they explain the data.

Bayesian inference—a general approach that successfully

characterizes how people “invert” intuitive theories in

many domains of cognition [19]—has been effective in

explaining how people do this. In simple two-dimensional

displays, IRL through Bayesian inference produces

human-like judgments when inferring people’s goals

[16], beliefs [17], desires [4], and helpfulness [12].
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Simple schematic of how Theory of Mind can be modeled as Inverse Reinforcement Learning. This approach follows a tradition in cognitive

science that argues that people make sense of their environment through working mental models [2,13–15]. (a) Core Theory of Mind components.

People’s beliefs about the world, combined with their desires, determine what they intend to do. People’s intentions guide their actions, which

produce outcomes that change their beliefs about the world. Pink arrows represent mental-state inference. (b) Core model-based reinforcement

learning components. A world model combined with the reward function generate a policy via utility maximization. Executing the policy produces

state changes, which, in turn, lead the agent to revise its world model. Pink arrows represent inverse reinforcement learning: recovering the latent

world model and reward function, given an observed policy execution. In practice, there is little agreement on how to map elements from RL

models onto Theory of Mind. [16], for instance, interpreted reward functions as goals, [17 as desires, and [18 as context-specific intentions.
Inverse reinforcement learning in use
In Cognitive Science, Theory of Mind has been theoreti-

cally and empirically posited as central to a broad array of

cognitive activities from language understanding [28,29]

to moral reasoning [30–32]. Research in IRL suggests the

same (Figure 2). In robotics, RL planners that integrate

IRL can predict where pedestrians are headed and pre-

emptively adjust their plan to avoid collisions (Figure 2a;

[20,21]). Conversely, RL planners can also use IRL on

their own actions to ensure that observers will be able to

infer the robot’s goal as quickly as possible (Figure 2b;

[22–24,33]). Using a similar logic, IRL can also be inte-

grated into RL planners to generate pedagogical actions

designed to help observers learn about the world

(Figure 2c; [25]). IRL has also been fruitful in solving

the problem of aligning a system’s values with our own.

Explicitly encoding reward functions into RL planners is

prone to errors and oversights. Systems with IRL can

instead infer the reward function from a person’s actions,

and use it as their own. This allows for easy transfer of

rewards across agents (Figure 2d; [26,27]), including

rewards that encode moral values [34]. More broadly,

IRL can jointly infer other agents’ beliefs and desires

(including desires to help or hinder others; [12,11]), and

even the location of unobservable rewards, by watching

other agents navigate the world (Figure 2e; [17,35]).
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Finally, cognitively-inspired models of language under-

standing are not usually conceptualized as IRL because

the domain lacks the spatiotemporal properties typical of

RL problems. These models, however, share similar key

ideas with IRL in that they work by modeling speakers as

rational agents that trade off costs with rewards. This

approach explains how we determine the meaning behind

ambiguous utterances [36]; how we infer speakers’ knowl-

edge based on their choice of words (e.g., suspecting that

the speaker knows there are two cats if we hear them refer

to ‘the big cat’ instead of just ‘the cat’) [37]; how we make

sense of non-literal word meanings [38]; and even how

speakers use prosody to ensure listeners will get the

meaning they wish to convey [39] (see [40] for review).

Making inverse reinforcement learning useful
Despite the success of IRL, its practical use is limited

because inverting reinforcement learning models is com-

putationally expensive. Deep learning—a subclass of AI,

historically known for its emphasis on biological, rather

than cognitive, plausibility [13,41]—has recently shown a

strong advantage in speed over competing approaches,

especially in the reinforcement learning domain [42–44].

Recent work has shown that it is also possible to imple-

ment IRL in neural networks [45–47], but these imple-

mentations face challenges characteristic of deep
www.sciencedirect.com
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learning: they require vast amounts of labeled examples

for training and they do not generalize well to new tasks or

environments [13]. For instance, state-of-the-art IRL

through deep learning [47] requires 32 million training

examples to perform goal-inference at the capacity of a

six-month-old infant [48]. If humans acquired Theory of

Mind in a similar way, infants would need to receive

almost 175,000 labeled goal-training episodes per day,

every day.

These challenges are already being mitigated by net-

works specifically designed to implement IRL [49,46,45].

And meta-learning—algorithms that, when trained on

multiple tasks, learn general properties that reduce the

need for data —will likely play a role in years to come [50–

52]. Yet, deep IRL with the flexibility of more traditional

IRL models [17,53] remains distant [13]. One solution

that has proved fruitful in other domains is to marry the

two approaches [54–57]. A deep net can be trained to

quickly transform observed actions into candidate mental

states. After this initial guess, a full-blown symbolic RL

model can take over to refine these inferences and use

them for a variety of tasks including generating predic-

tions, producing explanations, and making social evalua-

tions. Beyond its practical usefulness, this approach may

provide a cognitively-plausible theory that resembles the

dichotomy between fast automatic agency detection [58–

60] and richer but slower mental-state reasoning in

humans [61,53,17].

Inverse reinforcement learning as theory of
mind
While Inverse Reinforcement Learning captures core

inferences in human action-understanding, the way this

framework has been used to represent beliefs and desires

fails to capture the more structured mental-state reason-

ing that people use to make sense of others [61,62].

Belief representations

RL frameworks were historically designed to deal with

uncertainty in the broadest sense, including uncertainty

about the agent’s own position in space (e.g., a noisy

sensor may not correctly estimate a robot’s distance to a

wall). IRL often uses RL models called Partially Observ-

able Markov Decision Processes [63], where beliefs are

represented as probability distributions over every possi-

ble state of the world (e.g., [17]). This guarantees that the

representation is coherent and complete, but it also lacks

structure that human Theory of Mind exploits.

When we infer other people’s mental states, we often

infer small parts of what they know or believe (e.g.,

inferring that Sally didn’t know a coffee cup had leftover

wine as we see her take a sip and spit it out) without

reasoning about beliefs that are clearly true (e.g., is Sally

aware that she is standing on her feet?) or irrelevant (e.g.,

does Sally know the speed of sound?). Yet, current IRL
Current Opinion in Behavioral Sciences 2019, 29:105–110 
models can only evaluate the plausibility of beliefs that

are complete descriptions of everything an agent

believes. Intuitively, this is because the only way to tell

whether beliefs about some aspect of the world matter, is

by testing if they do.Humans appear to solve this problem

by assuming that other people’s beliefs are similar to our

own in most ways. If so, IRL may become more human-

like if it is initialized with an assumption that other

people’s beliefs in immediate situations are similar to

its own representation of the world, and then, proposals

about other people’s beliefs are not meant to provide a

full description of what’s in their mind, but rather to

capture in what ways their beliefs are critically similar or

different from our own.

Desire representations

Current IRL models typically represent desires as a

function that assigns a numerical value to each possible

state of the world (although note that there is little

agreement on how to map components of RL models

onto concepts in human Theory of Mind [17,16,53,18]).

While useful for predicting agents’ immediate actions

(namely, keep navigating towards inferred high-reward

states), this formalism does not reveal where these

rewards come from, and it does not specify how to predict

what the rewards may be in a new environment. To

achieve this, it is critical to recognize that rewards are

often the combination of simpler desires working at

different timescales and levels of abstraction. Making

sense of even the simplest actions, such as watching

someone get coffee, involves considering different

sources of rewards (perhaps not only enjoying coffee,

but also the company of friends), their tradeoffs (they

may have a meeting soon, preventing them from going to

the superior coffee shop that is located farther away), and

the costs the agent was willing to incur (time, distance,

and money). From an observer’s standpoint, actions alone

do not contain enough information to reveal how many

sources of costs and rewards are at play. This suggests that

effective IRL needs strong inductive biases that exploit

knowledge about the general types of rewards agents

have, the types of rewards that are usually at play in

different contexts, and the specific rewards that different

agents act under.

A bigger challenge to current approaches is that reward

functions fail to capture the logical and temporal structure

of desires. When we reason about others, we recognize

that their desires can depend on other desires (someone

might only enjoy coffee after having eaten something),

that they can depend on context (drinking coffee may be

more appealing for someone in the morning), and that

they can be conjunctive (liking coffee with sugar, but

neither in isolation) or disjunctive (liking coffee and milk,

but not together). A crucial challenge towards human-like

Theory of Mind is developing reward representations that

support expressing desires which can be fulfilled in
www.sciencedirect.com
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multiple ways, with spatiotemporal constraints, and vary-

ing degrees of abstraction. Advances in hierarchical RL

may play a critical role towards this goal [64,65]. In

addition, recent work suggests that representations origi-

nally developed to explain how people build complex

concepts by composing simpler ones [14,66] may be

useful. Under this approach, desires are represented as

propositions built by composing potential sources of

rewards, and reward functions are synthesized in each

context accordingly. In models like these, mental-state

inference corresponds to inferring the agents’ unobserv-

able reward function, as well as the proposition that

generated it [18], and it produces human-like inferences

that capture temporal and logical structures of desires.

Beyond inverse reinforcement learning
Human intuitive theories are often approximations of the

phenomena they aim to explain [5,67], allowing us to

ignore complexities that are less useful for prediction and

explanation, much in the same way that scientific theories

gain explanatory power through abstraction and simplifi-

cation [68,1,69,70]. Theory of Mind in humans may be

successful precisely because it only approximates how

humans actually make choices. If so, IRL may need to

depart from frameworks developed in RL, which focus on

the nuances of action production.

Perhaps the greatest challenge in modeling Theory of

Mind as Inverse Reinforcement Learning lies in captur-

ing variability in thinking. IRL focuses on recovering the

beliefs and desires under the assumption that all agents

make choices and take actions in identical ways. Yet, we

recognize that two people with the same beliefs and

desires may still make different reasonable choices and

take different reasonable actions. Theory of Mind in the

real world goes beyond mental-state inference and

includes learning agent-specific models of how people

think. We recognize that people forget and misremember,

that they get impatient, they fail to think of solutions that

feel obvious in retrospect, and they experience frustration

and regret. For IRL as Theory of Mind to succeed, we

must build a model that is more human than RL.
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