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Abstract

From minimal observable action, humans make fast, intuitive
judgments about what other people think, want, and feel (Hei-
der & Simmel, 1944). Even when no agent is visible, children
can infer the presence of intentional agents based on the envi-
ronmental traces that only agents could leave behind (Saxe et
al., 2005; Newman et al., 2010). Here we show that, beyond
inferring the presence of agents, four- to six-year-olds can also
determine the mental states that best explain an environmen-
tal trace. Participants (N = 35, M: 5.6 years, range:4.0 — 6.8
years) saw pairs of dresser drawers with different numbers
and orientations of open drawers, and they were asked to de-
termine which static scenes was generated by an agent with
a given knowledge state (whether the agent wasn’t search-
ing at all but was just playing, knew exactly where an ob-
ject was hidden, knew the approximate location, had no idea
where it was hidden, or at first didn’t know and then remem-
bered). We compare children’s performance to a computa-
tional model that extends models of mental-state attribution to
consider cases where the behavior is not observed but must be
inferred from the structure of the environment. We find that
children’s graded pattern of responded shows quantitative sim-
ilarity to the predictions made by our model.
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tional cognition

Introduction

From simple shapes moving around in a two-dimensional
space, adults can draw complex inferences about the men-
tal states and social interactions of agents (Heider & Sim-
mel, 1944). Even without any motion information, adults can
make the same kinds of inferences from static scenes. When
animal trackers see footprints in the snow, they can infer the
type of animal that left them, its likely goal or destination,
and sometimes even its age and physical condition; from in-
tersecting tracks, observers may even be able to reconstruct
social interactions among many different animals. Inferences
like these depend on many cognitive capacities. In order to
work backwards from traces in the environment to judgments
about mental states, people need to understand the generative
process that gave rise to the evidence. This requires under-
standing that 1. agents have psychological states like goals,
desires, and beliefs; 2. that these mental states guide how
agents act; and 3. that these actions leave observable changes
in the structure of the environment.

As we review below, considerable work suggests that many
of these capacities are present early in development. How-
ever, the vast majority of work in the development of the-
ory of mind has looked at children’s ability to recover men-
tal states from observations of agents’ actions; fewer studies
have looked at children’s ability to infer the presence of an
agent when no agent is present. How general and flexible is

our ability to recover information about agents from informa-
tion in the environment? Can children draw inferences about
agents from static scenes? Are they able to go beyond in-
ferring just the presence of agents to inferring their behavior,
goals, and mental states? We focus on four- to six-year-olds,
an age at which children can recover a wide range of men-
tal states—desires, ignorance, knowledge, and false beliefs—
from observed behavior (Wellman, 2014). We ask whether
preschoolers can make similarly rich inferences when neither
the agent nor the behavior is observed but must be recovered
from static traces. To interpret these results, we also present a
computational model that extends classical models of mental-
state attribution (C. L. Baker et al., 2017; Jara-Ettinger et al.,
2019; Lucas et al., 2014; Jern et al., 2017) to infer mental
states from indirect environmental traces.

Even infants interpret other people’s behavior as goal-
directed (Sommerville et al., 2005; Woodward, 1998), and
they assume that these goals are the result of agents trying to
maximize the subjective rewards they obtain, while minimiz-
ing the costs that they incur (Csibra et al., 2003; Jara-Ettinger
et al., 2016; Liu et al., 2017; Lucas et al., 2014). Through
these assumptions, children can draw rich inferences about
agents’ mental states, such as their preferences (Pesowski et
al., 2016; Jara-Ettinger et al., 2015) and knowledge (Jara-
Ettinger et al., 2017); whether false belief reasoning infer-
ences emerge before four and five remains very controversial
(see e.g., Baillargeon et al., 2010; Powell et al., 2018). In-
deed, even in four- and five-year-olds, some kinds of false be-
lief reasoning are relatively fragile (e.g., Bradmetz & Schnei-
der, 1999; Hogrefe et al., 1986).

Beyond a capacity to infer mental states from observable
behavior, young children can also infer the presence of agents
from indirect evidence. Infants and toddlers infer that a hand,
but not an inanimate, object is hidden behind a screen when
objects appear to move spontaneously (e.g., when an other-
wise stationary objects flies through the air; Saxe et al. 2005)
or behave probabilistically (e.g., a mechanical lever switches
from producing one effect to producing another; Wu et al.
2016). Similarly, infants expect a hand rather than a mechan-
ical claw when they see an improbable versus random sample
drawn from a population (Ma & Xu, 2013), and infer that
an intentional agent rather than a physical force constructed
an orderly versus scattered array of blocks (Newman et al.,
2010). Children also expect that, while non-agentive forces
always increase entropy in the environment, agents can in-
crease or decrease it at will (Friedman, 2001), and they se-
lectively infer that an agent is present only when they hear



ordered (but not random) sequences of sounds that cannot
be explained away by the environment (Schachner & Kim,
2018).

The studies above have looked at children’s inferences
given dynamic sequences of events (e.g., moving objects; se-
quential tones, etc.) and looked only at whether children in-
fer the presence of agents versus non-agents. To our knowl-
edge, no work has looked at the inferences children draw
from static scenes, or whether children can recover agents’
behavior, goals, and mental states from the structure of the en-
vironment. Inspired by formal work on theory of mind, here
we look at whether children can use relatively nuanced differ-
ences in the physical structure of a scene to recover agents’
actions, goals, knowledge, and potentially even false beliefs.

Computational Framework
Method

Our computational model is motivated by a growing body
of work showing that we intuitively expects agents to max-
imize their subjective utilities—the difference between the
costs they incur and the rewards they obtain (Jara-Ettinger
et al.,, 2016; Lucas et al., 2014; Jern et al., 2017). Using
this assumption, inferences about other people’s mental states
can be modeled as a form of inverse planning, where ob-
servers ‘invert’ agents’ decision-making process to recover
the mental states that best explain their observed behavior
(C. L. Baker et al., 2017, 2009; Jara-Ettinger et al., 2019).
Our model builds on this framework, but diverges in that we
consider cases where observers cannot directly see the actions
an agent took, and must instead infer them from an indirect
environmental trace.

For simplicity, we explain the logic of our model in the
context of our experiment. Imagine encountering a dresser
like the ones shown in Figure 1, with the knowledge that
someone had been searching for their sweater. You can see
the drawers that they opened, but not the order in which
they carried out the search. Intuitively, seeings these static
scenes reveals what agents’ might have known when they be-
gan searching for the sweater.

Formally, we define a knowledge state K as a probability
distribution over possible drawers. This allows us to capture a
wide range of possible knowledge states from full ignorance
(corresponding to a uniform distribution) to perfect knowl-
edge (corresponding a distribution where the drawer with the
sweater has probability 1, and all other drawers have proba-
bility 0). Given an observed dresser in state D, the probability
that an agent had knowledge state K is given by

p(K|D) =< p(D|K)p(K) (1)

where p(K) is the prior distribution over what the agent knew,
and P(D|K) is the likelihood that an agent with knowledge
state K would produce the environmental trace seen in the
dresser’s state D. To compute this likelihood, we consider the
potential unobservable actions that the agent may have taken,

Table 1: Hypotheses and Abbreviations

Play He wasn’t searching for anything, he was just

opening drawers to make a design
Exact He knew exactly where the item was hidden
Approx | He knew the approximate location of the item
None He had no idea where the item was hidden
Recall At first, he didn’t know where it was hidden,

but then he remembered

such that
p(DIK) =Y p(D|)p(t|K) 2)
teT

where 7 is a trajectory opening different drawers (from the set
T of all possible trajectories). p(D|t) is the probability that
the dresser would end in state D if the agent took actions #,
and p(7|K) is the probability that the agent would choose to
take actions ¢ given knowledge K. Thus, our model can be
thought of as decomposing the inference problem into two
components: an understanding of how mental states generate
actions (captured in p(z|K)), and an understanding of how
actions produce environmental traces (captured in p(D|r)).

Here we define the probability of generating different en-
vironmental traces (p(D|r)) as 1 when the trajectory opens all
and only the drawers that are open in D and 0 otherwise. To
compute the probability that an agent would take trajectory ¢
given their knowledge state (p(¢|k)), we use a Partially Ob-
servable Markov Decision Process (POMDP; C. L. Baker et
al., 2017).

POMDPs are a general planning framework to determine
how agents with incomplete knowledge about the world act
to fulfill their goals (encoded as a reward function over pos-
sible states of the world). In POMDPs, an agent can take
actions (corresponding to opening different drawers in our
paradigm) that both reveal information (in our case, whether
the drawer was empty or not) and can also change the world
state (such as leaving an environmental trace). Within the
POMDP framework, it is possible to compute the sequences
of actions that maximize an agent’s reward function, thus cap-
turing the expectation of how agents act to maximize the re-
wards while minimizing the costs they incur (Csibra 2003;
Jara-Ettinger et al. 2016; C. Baker 2004).

POMDPs are designed to produce an optimal solution. In
our paradigm, that would mean that (p(¢|k)) would be positive
only when the trajectory ¢ is an optimal search for the sweater,
given knowledge k. In our model we relax this assumption,
using a probabilistic POMDP that assumes that trajectories
with higher utilities have a higher probability of being gener-
ated (without expecting that agents are strictly optimal). We
achieve this using the standard approach of soft-maxing the
value function (see C. L. Baker et al. 2017 for extended dis-
cussion of probabilistic POMDPs in the context of Theory of
Mind models).



a."Beth wasn’t looking for anything, she was just
playing around and opening drawers for fun.”

d."Sam had no idea where the sticker was hidden.”
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b."'Sam knew exactly where the sticker was hidden.”

c."Maya knew around the area where the
sticker was hidden.”

w e

f.“At first, Tom didn't know where the sticker was,
but then he remembered exactly where it was.”

WA

e."Beth had no idea where the sticker was hidden.”

o

Figure 1: Stimuli used in the child behavior experiment. Each forced-choice question showed an image of a character with a
certain knowledge state, a target image of the predicted pattern of drawers (highlighted by black outline), and a distractor.

While POMDPs are a useful way of capturing the expecta-
tion that agents are efficient, they can also be overly restric-
tive. Intuitively, people have a naive expectation that agents
are more likely to begin searching on the top-left drawer, and
that they are biased in searching from left to right. Because
these expectations cannot be explained by appealing to ef-
ficiency in space, we modified our POMDP to assume that
agents are more likely to search from left to right, usually
starting on the top-left drawer.

Our model considered five different hypothesis, shown in
Table 1. We began by considering a first hypotheses where
knowledge is irrelevant. In the Play hypothesis, we assumed
that the agent was not searching for their sweater. Because
in this case, the agent is not expected to be fulfilling a goal
efficiently, we estimated the posterior probability of play by
placing a uniform likelihood over all trajectories in Eq. 2.
The next four rows of Table 1 show the basic types of knowl-
edge hypotheses that we considered. Exact hypotheses are
those were a single drawer has probability 1 (16 hypothe-
ses total), Approximate hypotheses are those where the agent
recalls the approximate location of the sweater (using a de-
caying probability distribution centered at the intersection of
any four drawers; 9 hypotheses), None hypotheses are those
where all drawers have the same probability (1 hypothesis),
and Recall hypotheses are those where the agent was initially
ignorant and then suddenly remembers its exact location.

Child Behavior Experiment
Participants

In accordance with an Open Science Framework preregistra-
tion, 35 children (mean: 5.6 years, range: 4.0-6.8 years) were
recruited from an urban children’s museum. Four additional
children were tested but not included in the sample; two for
parental or sibling interference, one for responding before the
prompt was completed, and one that chose not to complete the
task.

Methods

Children first completed a warm-up task where they counted
the drawers in a small (27cm x 22cm) set of 16 drawers ar-
ranged in a 4x4 grid. They were then asked to close their
eyes while the experimenter hid a sticker in one of the 16
drawers, and then were given as much time as needed to find
the sticker. Once children were familiar with the concept
of searching within the drawers, they then moved to the test
phase.

Children were told they would see a picture of a character
who had searched for a sticker in the same game that they
had just played. The experimenter then explained the task to
the child, saying “Remember when you were looking for your
sticker? You had no idea where I hid the sticker in your game,
because your eyes were closed. But now I’'m going to show
you some friends who were playing this game before, and the
characters you’re going to see might have known something
different about where their sticker was hidden. For each char-
acter, I’'m going to tell you what they knew about where their
sticker was hidden, and show you two different sets of draw-
ers that they could have used for their game. It’s your job to
listen to what they knew about where their sticker was, and to
tell me which set of drawers you think they looked inside for
their sticker.”

Participants were then shown six forced-choice test ques-
tions presented in a randomized order, each with an image of
a character, a target image of the predicted answer, and a dis-
tractor (Figure 1. As a proof of concept, for this experiment
we hand-matched targets and distractors to capture our intu-
ition about what might be the clearest discriminations. Half
the items used as targets were also used as distractors. For
each trial, the experimenter directed the child’s attention to
one set of drawers and then the other. They were then told
what this character knew about where their sticker was hid-
den (see Figure 1. for stimuli and prompts), and then asked
“Which set of drawers do you think [insert name] was look-



ing inside of?”” Children indicated their choice by naming the
color of the box around the set of drawers, or by pointing.
This procedure was repeated for each of the six trials, and
children did not receive feedback between trials.
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Figure 2: Overall, children performed above chance, answer-
ing correctly in 70% of trials. Each point represents a partic-
ipant with their age on the x-axis and the number of correct
trials on the y axis. The horizontal dotted line shows expected
chance performance (three correct answers) and the red line
shows the best linear fit with 95% confidence band in light

gray.

Results

When collapsed across all 6 trials (Figure 2.), children per-
formed above chance, succeeding on an average of 4.17 trials
(95% confidence intervals: [3.67,4.67], p < 0.0001, by one
sample t-test). In addition, a pre-registered analysis uncov-
ered a significant age effect, with children improving at the
task across age (p = .75, R? =15, p < 0.0001; Figure 2).

When split by question (Figure 3A.), children performed
significantly above chance in the play, approximate, and ef-
ficient trials, (95% confidence intervals = [0.60 —0.90], p =
0.002, [0.57 —0.89], p = 0.006, [0.57 —0.89], p = 0.006,
respectively), but not in the exact, random, or remember-
ing trials (95% confidence intervals [0.50 —0.81], p = 0.089,
[0.45—0.79], p = 0.175), [0.45 - 0.79], p = 0.175, respec-
tively.)

Model Results

To generate model predictions, we used a softmax parameter
of T =1.5. Our model outputs a posterior distribution over
every possible knowledge state, given a dresser. To translate
these inferences into task judgments, we calculated the nor-
malized probability that an agent would generate the environ-
mental trace of each pair of dresser, given the target knowl-
edge state. For instance, on the trial in Figure 1B, we ex-
tracted the posterior probability that only the first dresser was
generated by an agent with no knowledge, and the posterior
probability that only the second dresser was generated by an

agent with no knowledge, and we then normalized these judg-
ments so that they summed to 1.
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Figure 3: A. Behavioral results as a function of question
type. When split by question, children performed signifi-
cantly above chance in the play, approximate, and efficient
trials, but not in the exact, remembering, or random search
trials. Each bar column shows the distribution of responses
for each trial type. B. Model predictions for children’s be-
havioral test trials. Each bar shows the probabilities assigned
to the target and distractor image in each pair, with colors
indicating its preferred image for each tested trial.

Overall, the model aligned well with preschoolers’ re-
sponses, with an overall correlation of 0.856 (95% confi-
dence intervals = [0.147 — 0.984], p = 0.029). The model
had the strongest preferences in the play, exact, and remem-
ber conditions, preferring the target image with a probability
of 1, 1, and 0.941, respectively. Although preschoolers also
performed well above chance in these conditions, their re-
sponses were, unsurprisingly, noisier. In the approximate and
random cases, the model made predictions that were quali-
tatively similar to children’s estimates, although children did
not significantly prefer the target dresser in the random case.
However, children drew stronger inferences than the model



about the pattern consistent with an ignorant agent who en-
gaged in efficient search (i.e., searching adjacent drawers and
finding the target by chance); the model only preferred the
target pattern with a probability of 0.667. This is because our
model had a strong expectation for rational action, and an ex-
pectation that agents begin searching on the top-left drawer.
Thus, opening the top-left drawer already suggested that the
agent had no additional initial knowledge to go from, and
just began searching in the most convenient drawer. From
this standpoint, the model intuitively reasoned that both cases
were consistent with the agent having no knowledge, and that
the agent just got lucky in the left display by finding it on the
first try.

General Discussion

In the current study, we found that four- to six-year-olds were
able to match a range of mental states with images of dresser
drawers, given only the information that an agent was looking
for a target and the number and location of the open drawers.
Children’s judgments were consistent with a computational
framework that performs inverse planning to infer the order
in which the drawers were searched, as well as the knowledge
state that best explains the observed evidence.

Children performed above chance on the play, approxi-
mate, and efficient trials, but not on the exact, random, or
remembering trials. With regard to the random condition,
we believe the model and the children might both have ac-
curately represented information that our experimental intu-
itions (in hand-picking targets and distractors) missed. We
tested two cases in which the agent was ignorant about the
object’s location: one in which he searched efficiently, and
one in which he searched randomly. In the ignorant efficient
search condition, children chose the dresser with more draw-
ers open, suggesting they were sensitive to the fact that it was
unlikely that an ignorant agent would find the object in the
first drawer he searched. Interestingly however, the children
did not privilege this distinction in the random search case.
We suggest this might be because both options were unlikely:
It is unlikely that an ignorant agent would find the object on
his first try, but it is also unlikely that an agent would en-
gage in unnecessarily costly actions (an agent who respected
principles of rational action would follow a continuous path
rather than open non-adjacent drawers). Thus both options
may have been similarly improbable.

On the remembering task, the model chose the target con-
sistent with our adult, experimenter intuitions but four- to six-
year-olds did not. This is perhaps unsurprising since although
children start to pass classic unexpected transfer false belief
tasks (Wimmer & Perner, 1983) around age four and five,
many tasks involving false beliefs remain challenging well
until middle childhood (e.g. Bradmetz & Schneider 1999).
“Remembering” is an especially complex belief state, since it
involves correcting an initial false belief about one’s own ig-
norance. Inferring that an initially ignorant agent changed
into a knowledgeable agent, midway through search, may

have been especially difficult for young children, especially
in the absence of any agent or observed action at all. We
note also that although we framed this as a remembering con-
dition, children might have been more successful if we had
framed the task directly in terms of false beliefs. (The target
behavior is consistent with remembering the location midway
through search but it is also consistent with the agent initially
having a false belief that the object was in the lower right cor-
ner of the dresser and then realizing he was wrong and having
to search from scratch). Indeed, the mere fact that there are
two plausible construals may have posed a challenge for chil-
dren. Future research might disambiguate these accounts.

In the current study, we presented children with a two-
alternative forced-choice paradigm with hand-selected com-
parisons; as a preliminary test of children’s abilities, reducing
task demands was a priority. But in future work it would be
interesting to know if children might succeed in more com-
plex tasks, and whether they might even spontaneously artic-
ulate explanations for the drawers’ layout invoking the target
unobserved mental states. In future work, we also intend to
extend this study to adults, where we can vary the task in more
quantitatively precise ways. For example, we can ask adults
to rank the likelihood of each mental state based on each im-
age and compare their responses to the model across many
different patterns of drawers. We can also ask adults for free-
response explanations of the pattern of drawers to see how
often adults converge on the target hypotheses even when the
options are unconstrained.

However, the current findings already suggest the sophisti-
cation of children’s theory of mind. Extending what has been
previously demonstrated about young children’s understand-
ing of principles rational action, we found that children can
integrate their understanding of agents’ mental states with an
understanding of the costs and rewards of agents’ actions to
match what agents did and didn’t know from the alterations
they made in the structure of the environment. Our study also
points to the richness and flexibility of our intuitive psychol-
ogy. It is unlikely that anyone has ever been asked to match
mental inferences with a set of bureau drawers before, and
yet four-, five-, and six-year-olds readily recovered approxi-
mate knowledge, ignorance, and play from the evidence they
observed. While such inferences may seem trivial in the con-
text of bureau drawers, if we return to our original example
of observing animal tracks, it is clear why it might be criti-
cal to recover the unobserved behavior and mental states of
agents responsible for observed changes in the environment.
By investigating the computations that underlie this kind of
reasoning, we can come closer to understanding the nature
of our own minds—and our ability to imagine the minds of
others.
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